↓ Skip to main content

The role of soil bacterial community during winter fallow period in the incidence of tobacco bacterial wilt disease

Overview of attention for article published in Applied Microbiology and Biotechnology, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The role of soil bacterial community during winter fallow period in the incidence of tobacco bacterial wilt disease
Published in
Applied Microbiology and Biotechnology, January 2018
DOI 10.1007/s00253-018-8757-3
Pubmed ID
Authors

Yunhua Xiao, Xueduan Liu, Delong Meng, Jiemeng Tao, Yabing Gu, Huaqun Yin, Juan Li

Abstract

Bacterial wilt, caused by Ralstonia solanacearum, occurs occasionally during tobacco planting and potentially brings huge economic losses in affected areas. Soil microbes in different management stages play important roles in influencing bacterial wilt incidence. Studies have focused on the impacts of species diversity and composition during cropping periods on disease morbidity; however, the effects of the soil bacterial biomass, species diversity, species succession, and population interactions on morbidity remain unclear during non-cropping periods. In this study, we explored the soil bacterial communities in the non-cropping winter fallow (WF) and cropping late growing (LG) periods under consecutive monoculture systems using 16S ribosomal RNA gene sequencing and qPCR and further analyzed their effects on tobacco bacterial wilt incidence. We found that the bacterial communities in the WF period were significantly different from those in the LG period based on detrended correspondence analysis and dissimilarity tests. Crop morbidity was significantly related to bacterial community structure and to the presence of some genera during WF and LG periods. These genera, such as Arthrobacter, Pseudomonas, Acidobacteria GP6, and Pasteuria, may be potential biological control agents for bacterial wilt. Further analysis indicated that low soil bacterial diversity during the WF period, decrease of bacterial interactions from the WF to LG periods, and low soil biomass during the LG period all have the potential to increase morbidity. In conclusion, an increase of soil bacterial diversity and control of some bacterial abundances in the WF period might be an effective approach in controlling bacterial wilt incidence.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 20%
Student > Master 2 13%
Student > Bachelor 1 7%
Lecturer > Senior Lecturer 1 7%
Other 1 7%
Other 1 7%
Unknown 6 40%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 13%
Pharmacology, Toxicology and Pharmaceutical Science 1 7%
Biochemistry, Genetics and Molecular Biology 1 7%
Environmental Science 1 7%
Computer Science 1 7%
Other 3 20%
Unknown 6 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 January 2018.
All research outputs
#16,371,088
of 24,119,703 outputs
Outputs from Applied Microbiology and Biotechnology
#5,817
of 8,034 outputs
Outputs of similar age
#277,740
of 448,650 outputs
Outputs of similar age from Applied Microbiology and Biotechnology
#85
of 133 outputs
Altmetric has tracked 24,119,703 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,034 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,650 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 133 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.