↓ Skip to main content

Evaluation of on-line concentration coupled to liquid chromatography tandem mass spectrometry for the quantification of neonicotinoids and fipronil in surface water and tap water

Overview of attention for article published in Analytical & Bioanalytical Chemistry, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evaluation of on-line concentration coupled to liquid chromatography tandem mass spectrometry for the quantification of neonicotinoids and fipronil in surface water and tap water
Published in
Analytical & Bioanalytical Chemistry, March 2018
DOI 10.1007/s00216-018-0957-2
Pubmed ID
Authors

Juan Manuel Montiel-León, Sung Vo Duy, Gabriel Munoz, Marc Amyot, Sébastien Sauvé

Abstract

A study was initiated to investigate a fast and reliable method for the determination of selected systemic insecticides in water matrixes and to evaluate potential sources of bias in their analysis. Acetamiprid, clothianidin, desnitro-imidacloprid, dinotefuran, fipronil, imidacloprid, nitenpyram, thiacloprid, and thiamethoxam were amenable to analysis via on-line sample enrichment hyphenated to ultra-high-performance liquid chromatography tandem mass spectrometry. The selection of on-line solid-phase extraction parameters was dictated by a multicriterion desirability approach. A 2-mL on-line injection volume with a 1500 μL min-1 loading flow rate met the objectives sought in terms of chromatographic requirements, extraction efficiency, sensitivity, and precision. A total analysis time of 8 min per sample was obtained with method limits of detection in the range of 0.1-5 ng L-1 for the scope of targeted analytes. Automation at the sample concentration step yielded intraday and interday precisions in the range of 1-23 and 2-26%, respectively. Factors that could affect the whole method accuracy were further evaluated in matrix-specific experiments. The impact of the initial filtration step on analyte recovery was evaluated in ultra-pure water, tap water, and surface water. Out of the nine membranes tested, glass fiber filters and polyester filters appeared as the most appropriate materials. Sample storage stability was also investigated across the three matrix types; the targeted analytes displayed suitable stability during 28 days at either 4 °C or - 20 °C, with little deviations (± 10%) with respect to the initial T0 concentration. Method applicability was demonstrated in a range of tap water and surface water samples from the province of Québec, Canada. Results from the present survey indicated a predominance of thiamethoxam (< 0.5-10 and 3-61 ng L-1 in tap water and river water, respectively), clothianidin (< 0.5-6 and 2-88 ng L-1 in tap water and river water, respectively), and imidacloprid (< 0.1-1 and 0.8-38 ng L-1 in tap water and river water, respectively) among the targeted analytes. Graphical abstract ᅟ Development of solid-phase extraction coupled on-line to UHPLC-MS/MS for the rapid screening of systemic insecticides in water.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 21%
Researcher 8 15%
Student > Master 7 13%
Student > Postgraduate 4 8%
Lecturer 2 4%
Other 7 13%
Unknown 13 25%
Readers by discipline Count As %
Chemistry 16 31%
Environmental Science 6 12%
Agricultural and Biological Sciences 3 6%
Business, Management and Accounting 2 4%
Engineering 2 4%
Other 5 10%
Unknown 18 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 April 2018.
All research outputs
#16,053,755
of 25,382,440 outputs
Outputs from Analytical & Bioanalytical Chemistry
#4,978
of 9,619 outputs
Outputs of similar age
#201,130
of 347,366 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#83
of 208 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 347,366 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 208 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.