↓ Skip to main content

Coenzyme Q10 ameliorates oxidative stress and prevents mitochondrial alteration in ischemic retinal injury

Overview of attention for article published in Apoptosis, December 2013
Altmetric Badge

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Coenzyme Q10 ameliorates oxidative stress and prevents mitochondrial alteration in ischemic retinal injury
Published in
Apoptosis, December 2013
DOI 10.1007/s10495-013-0956-x
Pubmed ID
Authors

Dongwook Lee, Keun-Young Kim, Myoung Sup Shim, Sang Yeop Kim, Mark H. Ellisman, Robert N. Weinreb, Won-Kyu Ju

Abstract

Coenzyme Q10 (CoQ10) acts by scavenging reactive oxygen species for protecting neuronal cells against oxidative stress in neurodegenerative diseases. We tested whether a diet supplemented with CoQ10 ameliorates oxidative stress and mitochondrial alteration, as well as promotes retinal ganglion cell (RGC) survival in ischemic retina induced by intraocular pressure elevation. A CoQ10 significantly promoted RGC survival at 2 weeks after ischemia. Superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) expression were significantly increased at 12 h after ischemic injury. In contrast, the CoQ10 significantly prevented the upregulation of SOD2 and HO-1 protein expression in ischemic retina. In addition, the CoQ10 significantly blocked activation of astroglial and microglial cells in ischemic retina. Interestingly, the CoQ10 blocked apoptosis by decreasing caspase-3 protein expression in ischemic retina. Bax and phosphorylated Bad (pBad) protein expression were significantly increased in ischemic retina at 12 h. Interestingly, while CoQ10 significantly decreased Bax protein expression in ischemic retina, CoQ10 showed greater increase of pBad protein expression. Of interest, ischemic injury significantly increased mitochondrial transcription factor A (Tfam) protein expression in the retina at 12 h, however, CoQ10 significantly preserved Tfam protein expression in ischemic retina. Interestingly, there were no differences in mitochondrial DNA content among control- or CoQ10-treated groups. Our findings demonstrate that CoQ10 protects RGCs against oxidative stress by modulating the Bax/Bad-mediated mitochondrial apoptotic pathway as well as prevents mitochondrial alteration by preserving Tfam protein expression in ischemic retina. Our results suggest that CoQ10 may provide neuroprotection against oxidative stress-mediated mitochondrial alterations in ischemic retinal injury.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 1%
United States 1 1%
Unknown 71 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 19 26%
Student > Ph. D. Student 11 15%
Student > Doctoral Student 6 8%
Student > Master 6 8%
Student > Bachelor 4 5%
Other 13 18%
Unknown 14 19%
Readers by discipline Count As %
Medicine and Dentistry 20 27%
Agricultural and Biological Sciences 14 19%
Biochemistry, Genetics and Molecular Biology 5 7%
Neuroscience 5 7%
Pharmacology, Toxicology and Pharmaceutical Science 4 5%
Other 9 12%
Unknown 16 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 February 2015.
All research outputs
#18,401,956
of 22,793,427 outputs
Outputs from Apoptosis
#550
of 804 outputs
Outputs of similar age
#231,973
of 307,320 outputs
Outputs of similar age from Apoptosis
#9
of 17 outputs
Altmetric has tracked 22,793,427 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 804 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 307,320 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.