↓ Skip to main content

Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines

Overview of attention for article published in Theoretical and Applied Genetics, February 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

twitter
16 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines
Published in
Theoretical and Applied Genetics, February 2018
DOI 10.1007/s00122-018-3070-1
Pubmed ID
Authors

Paola Barba, Jacquelyn Lillis, R. Stephen Luce, Renaud Travadon, Michael Osier, Kendra Baumgartner, Wayne F. Wilcox, Bruce I. Reisch, Lance Cadle-Davidson

Abstract

Rapid characterization of novel NB-LRR-associated resistance to Phomopsis cane spot on grapevine using high-throughput sampling and low-coverage sequencing for genotyping, locus mapping and transcriptome analysis provides insights into genetic resistance to a hemibiotrophic fungus. Phomopsis cane and leaf spot, caused by the hemibiotrophic fungus Diaporthe ampelina (syn = Phomopsis viticola), reduces the productivity in grapevines. Host resistance was studied on three F1families derived from crosses involving resistant genotypes 'Horizon', Illinois 547-1, Vitis cinerea B9 and V. vinifera 'Chardonnay'. All families had progeny with extremely susceptible phenotypes, developing lesions on both dormant canes and maturing fruit clusters. Segregation of symptoms was observed under natural levels of inoculum in the field, while phenotypes on green shoots were confirmed under controlled inoculations in greenhouse. High-density genetic maps were used to localize novel qualitative resistance loci named Rda1 and Rda2 from V. cinerea B9 and 'Horizon', respectively. Co-linearity between reference genetic and physical maps allowed localization of Rda2 locus between 1.5 and 2.4 Mbp on chromosome 7, and Rda1 locus between 19.3 and 19.6 Mbp of chromosome 15, which spans a cluster of five NB-LRR genes. Further dissection of this locus was obtained by QTL mapping of gene expression values 14 h after inoculation across a subset of the 'Chardonnay' × V. cinerea B9 progeny. This provided evidence for the association between transcript levels of two of these NB-LRR genes with Rda1, with increased NB-LRR expression among susceptible progeny. In resistant parent V. cinerea B9, inoculation with D. ampelina was characterized by up-regulation of SA-associated genes and down-regulation of ethylene pathways, suggesting an R-gene-mediated response. With dominant effects associated with disease-free berries and minimal symptoms on canes, Rda1 and Rda2 are promising loci for grapevine genetic improvement.

X Demographics

X Demographics

The data shown below were collected from the profiles of 16 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 19%
Researcher 5 16%
Student > Doctoral Student 4 13%
Professor 2 6%
Other 2 6%
Other 4 13%
Unknown 8 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 45%
Biochemistry, Genetics and Molecular Biology 7 23%
Engineering 1 3%
Unknown 9 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 April 2018.
All research outputs
#2,493,576
of 23,794,258 outputs
Outputs from Theoretical and Applied Genetics
#194
of 3,565 outputs
Outputs of similar age
#53,956
of 332,727 outputs
Outputs of similar age from Theoretical and Applied Genetics
#5
of 43 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,565 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,727 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.