↓ Skip to main content

Herbicides in river water across the northeastern Italy: occurrence and spatial patterns of glyphosate, aminomethylphosphonic acid, and glufosinate ammonium

Overview of attention for article published in Environmental Science and Pollution Research, June 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
74 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Herbicides in river water across the northeastern Italy: occurrence and spatial patterns of glyphosate, aminomethylphosphonic acid, and glufosinate ammonium
Published in
Environmental Science and Pollution Research, June 2018
DOI 10.1007/s11356-018-2511-3
Pubmed ID
Authors

Mauro Masiol, Biagio Giannì, Marco Prete

Abstract

Glyphosate and glufosinate ammonium are the active ingredients of commonly used herbicides. Active agricultural lands extend over a large part of the Veneto region (Eastern Po Valley, Italy) and glyphosate and glufosinate ammonium are widely used. Consequently, surface waters can be potentially contaminated. This study investigates the occurrence of glyphosate and glufosinate ammonium as well as aminomethylphosphonic acid (AMPA, the degradation product of glyphosate) in river water of Veneto. Eighty-six samples were collected in 2015 at multiple sampling points across the region. Samples were analyzed for the two target herbicides, AMPA as well as for other variables, including water temperature, pH, dissolved oxygen, conductivity, hardness, BOD, COD, inorganic ions, total nitrogen, total phosphorus, total suspended solids, arsenic, and lead. The average concentrations (all samples) were 0.17, 0.18, and 0.10 μg L-1 for glyphosate, AMPA, and glufosinate ammonium, respectively. The European upper tolerable level for pesticides (annual average 0.1 μg L-1) was often exceeded. Chemometric analysis was therefore applied to (i) investigate the relationships among water pollutants, (ii) detect the potential sources of water contamination, (iii) assess the effective water pollution of rivers by identifying river basins with anomalous pollution levels, and (iv) assess the spatial variability of detected sources. Factor analysis identified four factors interpreted as potential sources and processes (use of herbicides, leaching of fertilizers, urban/industrial discharges, and the biological activity on polluted or stagnant waters). A discriminant analysis revealed that the pollution from anthropogenic discharges is homogeneously present in surface water of Veneto, while biological activity and fertilizers present heterogeneous distributions. This study gives insights into the concentrations of herbicides in rivers flowing through a wide region that has heavy use of these chemicals in agriculture. The study also points out some hot-spots and suggests the future implementation of the current monitoring protocols and network.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 74 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 74 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 24%
Researcher 8 11%
Student > Master 5 7%
Student > Doctoral Student 4 5%
Student > Bachelor 4 5%
Other 8 11%
Unknown 27 36%
Readers by discipline Count As %
Environmental Science 15 20%
Agricultural and Biological Sciences 9 12%
Chemistry 5 7%
Chemical Engineering 4 5%
Biochemistry, Genetics and Molecular Biology 3 4%
Other 7 9%
Unknown 31 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 November 2018.
All research outputs
#17,230,482
of 25,301,208 outputs
Outputs from Environmental Science and Pollution Research
#4,332
of 10,807 outputs
Outputs of similar age
#216,568
of 335,683 outputs
Outputs of similar age from Environmental Science and Pollution Research
#84
of 217 outputs
Altmetric has tracked 25,301,208 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,807 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,683 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 217 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.