↓ Skip to main content

Swimming versus running: effects on exhaled breath condensate pro-oxidants and pH

Overview of attention for article published in European Journal of Applied Physiology, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Swimming versus running: effects on exhaled breath condensate pro-oxidants and pH
Published in
European Journal of Applied Physiology, August 2018
DOI 10.1007/s00421-018-3958-0
Pubmed ID
Authors

Oscar F. Araneda, Felipe Contreras-Briceño, Gabriel Cavada, Ginés Viscor

Abstract

The respiratory redox-state of swimmers can be affected by chronic exposures to chlorinated pools, and the effects of different exercises on it are unknown. Our aim was to compare two exercises performed at high-intensity and under habitual environmental conditions (swimming indoor vs. running outdoor) on the production of pro-oxidants (hydrogen peroxide and nitrite) and pH in exhaled breath condensate (EBC) and spirometry parameters in competitive swimmers chronically exposed to chlorinated pools. Seventeen men and women (mean age ± SD = 21 ± 2 years) swam 3.5 km in an indoor pool treated with Cl2, and after 2-weeks, they ran 10 km outdoors. The pHEBC, [H2O2]EBC, [NO2-]EBC, [NO2-]EBC/[NO2-]Plasma and spirometry parameters were analyzed pre-exercise and 20 min and 24 h after exercise ended. Two mixed models were applied to compare EBC parameters between swimming and running. Lower levels of [H2O2]EBC and [NO2-]EBC (p = 0.008 and p = 0.018, respectively) were found 24-h post-swimming, and the same trend was observed for [NO2-]EBC/[NO2-]Plasma (p = 0.062). Correlations were found in both exercises between pre-exercise levels of pHEBC, [H2O2]EBC, [NO2-]EBC, and [NO2-]EBC/[NO2-]Plasma and their changes (Δ) after 24-h as well as between [H2O2]EBC and [NO2-]EBC for basal levels and for changes after 24 h. A relationship was also found for running exercise between pulmonary ventilation and changes after 24 h in [H2O2]EBC. Spirometry data were unaffected in both types of exercise. In competitive swimmers, at 24-h acute post-exercise follow-up, swimming decreased and running increased pro-oxidant biomarkers of pulmonary origin, without changes in lung function.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 28%
Student > Bachelor 3 10%
Lecturer 2 7%
Student > Doctoral Student 2 7%
Professor 1 3%
Other 2 7%
Unknown 11 38%
Readers by discipline Count As %
Sports and Recreations 7 24%
Medicine and Dentistry 5 17%
Nursing and Health Professions 2 7%
Environmental Science 1 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 3 10%
Unknown 10 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 October 2018.
All research outputs
#16,728,456
of 25,385,509 outputs
Outputs from European Journal of Applied Physiology
#3,226
of 4,345 outputs
Outputs of similar age
#209,147
of 341,399 outputs
Outputs of similar age from European Journal of Applied Physiology
#45
of 58 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,345 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.7. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,399 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 58 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.