↓ Skip to main content

High-degree and broad-spectrum resistance mediated by a combination of NIb siRNA and miRNA suppresses replication of necrotic and common strains of potato virus Y

Overview of attention for article published in Archives of Virology, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
High-degree and broad-spectrum resistance mediated by a combination of NIb siRNA and miRNA suppresses replication of necrotic and common strains of potato virus Y
Published in
Archives of Virology, August 2018
DOI 10.1007/s00705-018-3969-5
Pubmed ID
Authors

Ru Yu, Caixia Chen, Weilin Cao, Hongmei Liu, Shumei Zhou, Yunzhi Song, Changxiang Zhu

Abstract

In plants, viral replication can be inhibited through gene silencing, which is mediated by short interfering RNA (siRNA) or microRNA (miRNA). However, under natural conditions, viruses are extremely susceptible to mutations that may decrease the efficiency of cleavage of these small RNAs (sRNAs). Therefore, a single sRNA may not provide a sufficient degree of viral resistance to transgenic plants. Potato virus Y necrotic strain (PVYN) and Potato virus Y common strain (PVYO) are the two major PVY strains that cause systemic necrosis and mottling, respectively, in tobacco. In this study, we designed specific siRNAs and miRNAs to target two regions of the PVYO replicase gene (NIb). Eight plant expression vectors containing one or two sRNAs were constructed. Luciferase activity assays showed that the designed sRNAs successfully cleaved the NIb gene of PVYO and PVYN, and the vector carrying a combined siRNA- and miRNA-based short hairpin RNA (shRNA) demonstrated the strongest inhibitory effect. These effects were confirmed through the acquisition of PVYO and PVYN resistance in transgenic sRNA-expressing Nicotiana tabacum plants. This phenomenon could be related to a plant defense mechanism in which siRNA and miRNA pathways are complementary and interact to achieve gene silencing. Furthermore, there is a tendency for the homologous small RNA sequences (PVYO) to be more effective in conferring resistance than those with imperfect homology (PVYN). Overall, these findings confirm that the use of a combined siRNA- and miRNA-based shRNAs is a promising approach for introducing viral resistance to plants through genetic engineering.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 21%
Student > Bachelor 2 14%
Librarian 1 7%
Other 1 7%
Student > Doctoral Student 1 7%
Other 2 14%
Unknown 4 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 36%
Agricultural and Biological Sciences 5 36%
Computer Science 1 7%
Unknown 3 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 February 2023.
All research outputs
#19,019,142
of 24,221,802 outputs
Outputs from Archives of Virology
#3,152
of 4,341 outputs
Outputs of similar age
#243,302
of 334,598 outputs
Outputs of similar age from Archives of Virology
#42
of 84 outputs
Altmetric has tracked 24,221,802 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,341 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,598 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 84 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.