↓ Skip to main content

Effect of PEA-OXA on neuropathic pain and functional recovery after sciatic nerve crush

Overview of attention for article published in Journal of Neuroinflammation, September 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
52 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effect of PEA-OXA on neuropathic pain and functional recovery after sciatic nerve crush
Published in
Journal of Neuroinflammation, September 2018
DOI 10.1186/s12974-018-1303-5
Pubmed ID
Authors

Enrico Gugliandolo, Ramona D’amico, Marika Cordaro, Roberta Fusco, Rosalba Siracusa, Rosalia Crupi, Daniela Impellizzeri, Salvatore Cuzzocrea, Rosanna Di Paola

Abstract

Animal models of sciatic nerve injury are commonly used to study neuropathic pain as well as axon regeneration. Inflammation/immune response at the site of nerve lesion is known to be an essential trigger of the pathological changes that have a critical impact on nerve repair and regeneration; moreover, the damage to peripheral nerve can cause a loss of sensory function and produces a persistent neuropathic pain. N-Acylethanolamines (NAEs) involve a family of lipid molecules existent in animal and plant, of which is N-palmitoylethanolamide (PEA) that arouses great attention owing to its anti-inflammatory, analgesic, and neuroprotective activities. The modulation of specific amidases for NAEs (and in particular NAE-hydrolyzing acid amidase NAAA, which is more selective for PEA) could be a condition to preserve its levels. Here, we investigated, in a mice model of sciatic nerve crush, the effect of 2-pentadecyl-2-oxazoline (PEA-OXA) the oxazoline of PEA that reportedly modulates activity of NAAA. In this experimental model, the mice, following the sciatic nerve crush, were treated daily with PEA-OXA at a dose of 10 mg\kg for 14 days. Therefore, we evaluated the effects of PEA-OXA on the degree of injury, on the inhibition of neuropathic pain, and on the inflammatory process, as in the improvement of reparative processes and therefore in the restoration of locomotor function. Our results showed that PEA-OXA (10 mg/kg) treatment, daily, for 14 days after sciatic nerve crush, have an anti-inflammatory and neuroprotective effect and moreover have an analgesic protective effect on hypersensitivity, and improve the functional recovery after nerve crush. Therefore, treatment with PEA-OXA as a whole has shown a protective effect, which makes it a powerful candidate for the treatment of peripheral nerve injury and neuropathic pain.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 19%
Student > Master 3 12%
Other 3 12%
Student > Doctoral Student 2 8%
Librarian 1 4%
Other 5 19%
Unknown 7 27%
Readers by discipline Count As %
Medicine and Dentistry 3 12%
Pharmacology, Toxicology and Pharmaceutical Science 2 8%
Neuroscience 2 8%
Biochemistry, Genetics and Molecular Biology 1 4%
Agricultural and Biological Sciences 1 4%
Other 7 27%
Unknown 10 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 December 2018.
All research outputs
#14,720,444
of 23,577,761 outputs
Outputs from Journal of Neuroinflammation
#1,639
of 2,726 outputs
Outputs of similar age
#190,841
of 338,623 outputs
Outputs of similar age from Journal of Neuroinflammation
#37
of 68 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,726 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.7. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 338,623 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 68 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.