↓ Skip to main content

Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Regulate the Phenotype of Smooth Muscle Cells to Limit Intimal Hyperplasia

Overview of attention for article published in Cardiovascular Drugs and Therapy, December 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Regulate the Phenotype of Smooth Muscle Cells to Limit Intimal Hyperplasia
Published in
Cardiovascular Drugs and Therapy, December 2015
DOI 10.1007/s10557-015-6630-5
Pubmed ID
Authors

Rong Liu, Hong Shen, Jian Ma, Leiqing Sun, Meng Wei

Abstract

Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) play important roles in the reduction of inflammation in multiple disease models. However, their role in vein graft (VG) remodeling is undefined. We aimed to investigate the effect of EVs from adipose MSCs (ADMSC-EVs) on VG intimal hyperplasia and to explore the possible mechanisms. After generation and characterization of control-EVs and ADMSC-EVs in vitro, we investigated their effect on the proliferation and migration of vascular smooth muscle cells (VSMCs) in vitro. Next, we established a mouse model of VG transplantation. Mice underwent surgery and received control-EVs or ADMSC-EVs by intraperitoneal injection every other day for 20 days. VG remodeling was evaluated after 4 weeks. We also assessed the effect of ADMSC-EVs on macrophage migration and inflammatory cytokine expression. Significant inhibitory effects of ADMSC-EVs on in vitro VSMC proliferation (p < 0.05) and migration (p < 0.05) were observed compared with control-EVs. The extent of intimal hyperplasia was significantly decreased in ADMSC-EV-treated mice compared with control-EV-treated mice (26 ± 8.4 vs. 45 ± 9.0 μm, p < 0.05). A reduced presence of macrophages was observed in ADMSC-EV-treated mice (p < 0.05). Significantly decreased expression of inflammatory cytokines interleukin (IL)-6 and monocyte chemoattractant protein-1 (MCP-1) was also found in the ADMSC-EV-treated group (both p < 0.05). In addition, phosphorylation of Akt, Erk1/2, and p38 in VGs was decreased in the ADMSC-EV-treated group. We demonstrated that ADMSC-EVs exert an inhibitory effect on VG neointima formation by regulating VSMC proliferation and migration, macrophage migration, inflammatory cytokine expression, and the related signaling pathways.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 19%
Researcher 5 19%
Student > Postgraduate 3 11%
Student > Master 3 11%
Student > Ph. D. Student 3 11%
Other 4 15%
Unknown 4 15%
Readers by discipline Count As %
Medicine and Dentistry 7 26%
Biochemistry, Genetics and Molecular Biology 4 15%
Agricultural and Biological Sciences 3 11%
Engineering 3 11%
Computer Science 2 7%
Other 3 11%
Unknown 5 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 December 2015.
All research outputs
#20,298,249
of 22,835,198 outputs
Outputs from Cardiovascular Drugs and Therapy
#612
of 686 outputs
Outputs of similar age
#326,296
of 389,038 outputs
Outputs of similar age from Cardiovascular Drugs and Therapy
#10
of 10 outputs
Altmetric has tracked 22,835,198 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 686 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 389,038 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one.