↓ Skip to main content

Silica-supported pyrolyzed lignin for solid-phase extraction of rare earth elements from fresh and sea waters followed by ICP-MS detection

Overview of attention for article published in Analytical & Bioanalytical Chemistry, September 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
3 X users

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Silica-supported pyrolyzed lignin for solid-phase extraction of rare earth elements from fresh and sea waters followed by ICP-MS detection
Published in
Analytical & Bioanalytical Chemistry, September 2018
DOI 10.1007/s00216-018-1376-0
Pubmed ID
Authors

Federica Maraschi, Andrea Speltini, Tiziana Tavani, Maria Grazia Gulotta, Daniele Dondi, Chiara Milanese, Mirko Prato, Antonella Profumo, Michela Sturini

Abstract

Silica-supported pyrolyzed lignin (pLG@silica) was investigated as a solid sorbent for the pre-concentration of rare earth elements (REE) from natural waters followed by inductively coupled plasma mass spectrometry (ICP-MS) analysis. The carbon-based material was easily prepared by pyrolytic treatment of lignin at 600 °C after its adsorption onto silica micro-particles. pLG@silica was characterized by scanning electron microscopy (SEM), surface area measurements (BET method), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), point of zero charge measurement, and X-ray photoelectron spectroscopy (XPS). The as-prepared material (50 mg) was tested as fixed-bed sorbent for the solid-phase extraction (SPE) of tap, river, and sea water samples spiked with REE in the 10-150 ng L-1 range, followed by ICP-MS analysis. A quantitative adsorption was observed for all REE with recoveries in the range of 72-118%. A suitable inter-day precision (RSDs 5-12%, n = 3) was obtained. Sample volumes up to 250 mL provided enrichment factors up to 100. The method detection and quantification limits (MDLs and MQLs) were in the range of 0.4-0.6 ng L-1 and 1-2 ng L-1, respectively. The batch-to-batch reproducibility was verified on four pLG@silica independent preparations. As remarkable advantages, pLG@silica proved to be of easy preparation using a waste material, inexpensive, and reusable for at least 20 SPE cycles.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 30%
Student > Postgraduate 1 10%
Student > Master 1 10%
Unknown 5 50%
Readers by discipline Count As %
Chemistry 2 20%
Environmental Science 1 10%
Chemical Engineering 1 10%
Unknown 6 60%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 November 2018.
All research outputs
#17,292,294
of 25,385,509 outputs
Outputs from Analytical & Bioanalytical Chemistry
#5,671
of 9,619 outputs
Outputs of similar age
#225,339
of 350,858 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#64
of 145 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 350,858 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 145 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.