↓ Skip to main content

The cag-pathogenicity island encoded CncR1 sRNA oppositely modulates Helicobacter pylori motility and adhesion to host cells

Overview of attention for article published in Cellular and Molecular Life Sciences, February 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The cag-pathogenicity island encoded CncR1 sRNA oppositely modulates Helicobacter pylori motility and adhesion to host cells
Published in
Cellular and Molecular Life Sciences, February 2016
DOI 10.1007/s00018-016-2151-z
Pubmed ID
Authors

Andrea Vannini, Davide Roncarati, Alberto Danielli

Abstract

Small regulatory RNAs (sRNAs) are emerging as key post-transcriptional regulators in many bacteria. In the human pathobiont Helicobacter pylori a plethora of trans- and cis-encoded sRNAs have been pinpointed by a global transcriptome study. However, only two have been studied in depth at the functional level. Here we report the characterization of CncR1, an abundant and conserved sRNA encoded by the virulence-associated cag pathogenicity island (cag-PAI) of H. pylori. Growth-phase dependent transcription of CncR1 is directed by the PcagP promoter, which resulted to be a target of the essential transcriptional regulator HsrA (HP1043). We demonstrate that the 213 nt transcript arising from this promoter ends at an intrinsic terminator, few bases upstream of the annotated cagP open reading frame, establishing CncR1 as the predominant gene product encoded by the cagP (cag15) locus. Interestingly, the deletion of the locus resulted in the deregulation en masse of σ(54)-dependent genes, linking CncR1 to flagellar functions. Accordingly, the enhanced motility recorded for cncR1 deletion mutants was complemented by ectopic reintroduction of the allele in trans. In silico prediction identified fliK, encoding a flagellar checkpoint protein, as likely regulatory target of CncR1. The interaction of CncR1 with the fliK mRNA was thus further investigated in vitro, demonstrating the formation of strand-specific interactions between the two RNA molecules. Accordingly, the full-length translational fusions of fliK with a lux reporter gene were induced in a cncR1 deletion mutant in vivo. These data suggest the involvement of CncR1 in the post-transcriptional modulation of H. pylori motility functions through down-regulation of a critical flagellar checkpoint factor. Concurrently, the cncR1 mutant revealed a decrease of transcript levels for several H. pylori adhesins, resulting in a phenotypically significant impairment of bacterial adhesion to a host gastric cell line. The data presented support a model in which the cag-PAI encoded CncR1 sRNA is able to oppositely modulate bacterial motility and adhesion to host cells.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Thailand 1 3%
Unknown 36 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 16%
Student > Bachelor 6 16%
Professor > Associate Professor 4 11%
Student > Master 4 11%
Student > Doctoral Student 3 8%
Other 8 22%
Unknown 6 16%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 43%
Immunology and Microbiology 5 14%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Agricultural and Biological Sciences 2 5%
Medicine and Dentistry 2 5%
Other 0 0%
Unknown 10 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 February 2016.
All research outputs
#21,141,111
of 23,794,258 outputs
Outputs from Cellular and Molecular Life Sciences
#3,769
of 4,151 outputs
Outputs of similar age
#341,005
of 404,451 outputs
Outputs of similar age from Cellular and Molecular Life Sciences
#51
of 57 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,151 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 404,451 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 57 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.