↓ Skip to main content

Development and characterization of a spring hexaploid wheat line with no functional VRN2 genes

Overview of attention for article published in Theoretical and Applied Genetics, April 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

twitter
21 X users

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
51 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Development and characterization of a spring hexaploid wheat line with no functional VRN2 genes
Published in
Theoretical and Applied Genetics, April 2016
DOI 10.1007/s00122-016-2713-3
Pubmed ID
Authors

Nestor Kippes, Andrew Chen, Xiaoqin Zhang, Adam J. Lukaszewski, Jorge Dubcovsky

Abstract

The combination of three non-functional alleles of the flowering repressor VRN2 results in a spring growth habit in wheat. In temperate cereals with a winter growth habit, a prolonged exposure to low temperatures (vernalization) accelerates flowering. Before vernalization, the VRN2 locus plays a central role in maintaining flowering repression. Non-functional VRN2 alleles result in spring growth habit and are frequent in diploid wheat and barley. However, in hexaploid wheat, the effect of these non-functional VRN2 alleles is masked by gene redundancy. In this study, we developed a triple VRN2 mutant (synthetic vrn2-null) in hexaploid wheat by combining the non-functional VRN-A2 allele present in most polyploid wheats with a VRN-B2 deletion from tetraploid wheat, and a non-functional VRN-D2 allele from Aegilops tauschii (Ae. tauschii) (the donor of hexaploid wheat D genome). Non-vernalized vrn2-null plants flowered 118 days (P < 2.8E-07) earlier than the winter control, and showed a limited vernalization response. The functional VRN-B2 allele is expressed at higher levels than the functional VRN-D2 allele and showed a stronger repressive effect under partial vernalization (4 °C for 4 weeks), and also in non-vernalized plants carrying only a functional VRN-B2 or VRN-D2 in heterozygous state. These results suggest that different combinations of VRN-B2 and VRN-D2 alleles can be a used to modulate the vernalization response in regions with mild winters. Spring vrn2-null mutants have been selected repeatedly in diploid wheat and barley, suggesting that they may have an adaptative value and that may be useful in hexaploid wheat. Spring wheat breeders can use these new alleles to improve wheat adaptation to different or changing environments.

X Demographics

X Demographics

The data shown below were collected from the profiles of 21 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 2%
Sri Lanka 1 2%
Unknown 49 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 29%
Researcher 8 16%
Student > Master 6 12%
Lecturer 2 4%
Professor > Associate Professor 2 4%
Other 6 12%
Unknown 12 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 27 53%
Biochemistry, Genetics and Molecular Biology 5 10%
Chemical Engineering 1 2%
Engineering 1 2%
Unknown 17 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 November 2019.
All research outputs
#2,531,336
of 23,794,258 outputs
Outputs from Theoretical and Applied Genetics
#200
of 3,565 outputs
Outputs of similar age
#41,425
of 300,348 outputs
Outputs of similar age from Theoretical and Applied Genetics
#3
of 34 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,565 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,348 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.