↓ Skip to main content

Machine learning identifies candidates for drug repurposing in Alzheimer’s disease

Overview of attention for article published in Nature Communications, February 2021
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Citations

dimensions_citation
90 Dimensions

Readers on

mendeley
256 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Machine learning identifies candidates for drug repurposing in Alzheimer’s disease
Published in
Nature Communications, February 2021
DOI 10.1038/s41467-021-21330-0
Pubmed ID
Authors

Steve Rodriguez, Clemens Hug, Petar Todorov, Nienke Moret, Sarah A. Boswell, Kyle Evans, George Zhou, Nathan T. Johnson, Bradley T. Hyman, Peter K. Sorger, Mark W. Albers, Artem Sokolov

Abstract

Clinical trials of novel therapeutics for Alzheimer's Disease (AD) have consumed a large amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA) for another indication is a more rapid and less expensive option. We present DRIAD (Drug Repurposing In AD), a machine learning framework that quantifies potential associations between the pathology of AD severity (the Braak stage) and molecular mechanisms as encoded in lists of gene names. DRIAD is applied to lists of genes arising from perturbations in differentiated human neural cell cultures by 80 FDA-approved and clinically tested drugs, producing a ranked list of possible repurposing candidates. Top-scoring drugs are inspected for common trends among their targets. We propose that the DRIAD method can be used to nominate drugs that, after additional validation and identification of relevant pharmacodynamic biomarker(s), could be readily evaluated in a clinical trial.

Twitter Demographics

The data shown below were collected from the profiles of 94 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 256 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 256 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 51 20%
Researcher 44 17%
Student > Bachelor 17 7%
Student > Master 16 6%
Professor 12 5%
Other 36 14%
Unknown 80 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 31 12%
Pharmacology, Toxicology and Pharmaceutical Science 22 9%
Neuroscience 21 8%
Computer Science 18 7%
Chemistry 13 5%
Other 62 24%
Unknown 89 35%

Attention Score in Context

This research output has an Altmetric Attention Score of 299. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 March 2022.
All research outputs
#104,748
of 23,870,803 outputs
Outputs from Nature Communications
#1,446
of 49,898 outputs
Outputs of similar age
#3,658
of 552,587 outputs
Outputs of similar age from Nature Communications
#67
of 1,960 outputs
Altmetric has tracked 23,870,803 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 49,898 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 56.2. This one has done particularly well, scoring higher than 97% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 552,587 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 1,960 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.