↓ Skip to main content

Exercise‐based cardiac rehabilitation for adults after heart valve surgery

Overview of attention for article published in Cochrane database of systematic reviews, May 2021
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
33 X users
facebook
1 Facebook page
wikipedia
1 Wikipedia page

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
315 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exercise‐based cardiac rehabilitation for adults after heart valve surgery
Published in
Cochrane database of systematic reviews, May 2021
DOI 10.1002/14651858.cd010876.pub3
Pubmed ID
Authors

Lizette N Abraham, Kirstine L Sibilitz, Selina K Berg, Lars H Tang, Signe S Risom, Jane Lindschou, Rod S Taylor, Britt Borregaard, Ann-Dorthe Zwisler

Abstract

The impact of exercise-based cardiac rehabilitation (CR) following heart valve surgery is uncertain. We conducted an update of this systematic review and a meta-analysis to assess randomised controlled trial evidence for the use of exercise-based CR following heart valve surgery. To assess the benefits and harms of exercise-based CR compared with no exercise training in adults following heart valve surgery or repair, including both percutaneous and surgical procedures. We considered CR programmes consisting of exercise training with or without another intervention (such as an intervention with a psycho-educational component). We searched the Cochrane Central Register of Clinical Trials (CENTRAL), in the Cochrane Library; MEDLINE (Ovid); Embase (Ovid); the Cumulative Index to Nursing and Allied Health Literature (CINAHL; EBSCO); PsycINFO (Ovid); Latin American Caribbean Health Sciences Literature (LILACS; Bireme); and Conference Proceedings Citation Index-Science (CPCI-S) on the Web of Science (Clarivate Analytics) on 10 January 2020. We searched for ongoing trials from ClinicalTrials.gov, Clinical-trials.com, and the World Health Organization International Clinical Trials Registry Platform on 15 May 2020. We included randomised controlled trials that compared exercise-based CR interventions with no exercise training. Trial participants comprised adults aged 18 years or older who had undergone heart valve surgery for heart valve disease (from any cause) and had received heart valve replacement or heart valve repair. Both percutaneous and surgical procedures were included. Two review authors independently extracted data. We assessed the risk of systematic errors ('bias') by evaluating risk domains using the 'Risk of bias' (RoB2) tool. We assessed clinical and statistical heterogeneity. We performed meta-analyses using both fixed-effect and random-effects models. We used the GRADE approach to assess the quality of evidence for primary outcomes (all-cause mortality, all-cause hospitalisation, and health-related quality of life). We included six trials with a total of 364 participants who have had open or percutaneous heart valve surgery. For this updated review, we identified four additional trials (216 participants). One trial had an overall low risk of bias, and we classified the remaining five trials as having some concerns. Follow-up ranged across included trials from 3 to 24 months. Based on data at longest follow-up, a total of nine participants died: 4 CR versus 5 control (relative risk (RR) 0.83, 95% confidence interval (CI) 0.26 to 2.68; 2 trials, 131 participants; GRADE quality of evidence very low). No trials reported on cardiovascular mortality. One trial reported one cardiac-related hospitalisation in the CR group and none in the control group (RR 2.72, 95% CI 0.11 to 65.56; 1 trial, 122 participants; GRADE quality of evidence very low). We are uncertain about health-related quality of life at completion of the intervention in CR compared to control (Short Form (SF)-12/36 mental component: mean difference (MD) 1.28, 95% CI -1.60 to 4.16; 2 trials, 150 participants; GRADE quality of evidence very low; and SF-12/36 physical component: MD 2.99, 95% CI -5.24 to 11.21; 2 trials, 150 participants; GRADE quality of evidence very low), or at longest follow-up (SF-12/36 mental component: MD -1.45, 95% CI -4.70 to 1.80; 2 trials, 139 participants; GRADE quality of evidence very low; and SF-12/36 physical component: MD -0.87, 95% CI -3.57 to 1.83; 2 trials, 139 participants; GRADE quality of evidence very low).  AUTHORS' CONCLUSIONS: Due to lack of evidence and the very low quality of available evidence, this updated review is uncertain about the impact of exercise-CR in this population in terms of mortality, hospitalisation, and health-related quality of life. High-quality (low risk of bias) evidence on the impact of CR is needed to inform clinical guidelines and routine practice.

X Demographics

X Demographics

The data shown below were collected from the profiles of 33 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 315 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 315 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 32 10%
Student > Bachelor 24 8%
Researcher 22 7%
Other 15 5%
Student > Ph. D. Student 10 3%
Other 32 10%
Unknown 180 57%
Readers by discipline Count As %
Medicine and Dentistry 62 20%
Nursing and Health Professions 40 13%
Neuroscience 3 <1%
Sports and Recreations 3 <1%
Biochemistry, Genetics and Molecular Biology 2 <1%
Other 12 4%
Unknown 193 61%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 24. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 July 2023.
All research outputs
#1,596,352
of 25,462,162 outputs
Outputs from Cochrane database of systematic reviews
#3,432
of 12,766 outputs
Outputs of similar age
#41,613
of 454,375 outputs
Outputs of similar age from Cochrane database of systematic reviews
#48
of 126 outputs
Altmetric has tracked 25,462,162 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,766 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 36.5. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 454,375 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 126 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.