↓ Skip to main content

Fish Utilisation of Wetland Nurseries with Complex Hydrological Connectivity

Overview of attention for article published in PLOS ONE, November 2012
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
8 X users
facebook
1 Facebook page

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fish Utilisation of Wetland Nurseries with Complex Hydrological Connectivity
Published in
PLOS ONE, November 2012
DOI 10.1371/journal.pone.0049107
Pubmed ID
Authors

Ben Davis, Ross Johnston, Ronald Baker, Marcus Sheaves

Abstract

The physical and faunal characteristics of coastal wetlands are driven by dynamics of hydrological connectivity to adjacent habitats. Wetlands on estuary floodplains are particularly dynamic, driven by a complex interplay of tidal marine connections and seasonal freshwater flooding, often with unknown consequences for fish using these habitats. To understand the patterns and subsequent processes driving fish assemblage structure in such wetlands, we examined the nature and diversity of temporal utilisation patterns at a species or genus level over three annual cycles in a tropical Australian estuarine wetland system. Four general patterns of utilisation were apparent based on CPUE and size-structure dynamics: (i) classic nursery utlisation (use by recently settled recruits for their first year) (ii) interrupted peristence (iii) delayed recruitment (iv) facultative wetland residence. Despite the small self-recruiting 'facultative wetland resident' group, wetland occupancy seems largely driven by connectivity to the subtidal estuary channel. Variable connection regimes (i.e. frequency and timing of connections) within and between different wetland units (e.g. individual pools, lagoons, swamps) will therefore interact with the diversity of species recruitment schedules to generate variable wetland assemblages in time and space. In addition, the assemblage structure is heavily modified by freshwater flow, through simultaneously curtailing persistence of the 'interrupted persistence' group, establishing connectivity for freshwater spawned members of both the 'facultative wetland resident' and 'delayed recruitment group', and apparently mediating use of intermediate nursery habitats for marine-spawned members of the 'delayed recruitment' group. The diversity of utilisation pattern and the complexity of associated drivers means assemblage compositions, and therefore ecosystem functioning, is likely to vary among years depending on variations in hydrological connectivity. Consequently, there is a need to incorporate this diversity into understandings of habitat function, conservation and management.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 1 1%
Mali 1 1%
Unknown 80 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 20 24%
Student > Ph. D. Student 15 18%
Student > Master 14 17%
Student > Bachelor 7 9%
Other 6 7%
Other 10 12%
Unknown 10 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 37%
Environmental Science 25 30%
Engineering 4 5%
Earth and Planetary Sciences 3 4%
Business, Management and Accounting 2 2%
Other 0 0%
Unknown 18 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 November 2012.
All research outputs
#5,472,051
of 22,685,926 outputs
Outputs from PLOS ONE
#66,397
of 193,650 outputs
Outputs of similar age
#40,630
of 182,177 outputs
Outputs of similar age from PLOS ONE
#1,181
of 4,829 outputs
Altmetric has tracked 22,685,926 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 193,650 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.0. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 182,177 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 4,829 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.