↓ Skip to main content

1,25-Dihydroxyvitamin D3 Promotes a Sustained LPS-Induced NF-κB-Dependent Expression of CD55 in Human Monocytic THP-1 Cells

Overview of attention for article published in PLOS ONE, November 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
1,25-Dihydroxyvitamin D3 Promotes a Sustained LPS-Induced NF-κB-Dependent Expression of CD55 in Human Monocytic THP-1 Cells
Published in
PLOS ONE, November 2012
DOI 10.1371/journal.pone.0049318
Pubmed ID
Authors

Michael G. Izban, Bogdan J. Nowicki, Stella Nowicki

Abstract

The vitamin D3 system imposes immunosuppressive effects on monocytic cells, in part, by inhibiting NF-κB-dependent expression of proinflammatory mediators. CD55, a cell surface complement regulatory protein that promotes protective and anti-inflammatory properties, is reportedly an NF-κB target gene transiently induced in monocytic cells by the bacterial endotoxin LPS. CD55 is elevated on white cells in women experiencing preterm labor (a pathophysiology commonly associated with bacterial infection) and failure to maintain CD55 was associated with subsequent preterm delivery. We examined the influence of vitamin D3 signaling on LPS-induced expression of CD55 in human monocytic THP-1 cells using quantitative PCR, immunoblot, immunohistochemistry, and NF-κB activation pathway inhibitors. Non-NF-κB targets CD14 and CD11b, which modulate bacterial surveillance and eradication, respectively, were also examined. LPS produced a rapid transient 1.6-fold increase in CD55 mRNA. 1,25-D3 alone did not affect CD55 mRNA expression within the first 48 h. However, in 1,25-D3 pretreated cells, LPS produced a >4-fold immediate and sustained increase in CD55 mRNA and protein expression, which was blocked by NF-κB inhibitors. Our results unexpectedly suggest that vitamin D3 signaling may promote an anti-inflammatory response through an NF-κB-dependent increase in CD55 expression. As expected, LPS or 1,25-D3 alone led to sustained increases in CD14 and CD11b expression. In 1,25-D3 pretreated cells, LPS differentially regulated protein expression - CD14 (21-fold increase) and CD11b (a transient 2-fold decrease) - principally at the posttranscriptional level. The coordinated temporal expression of CD55, CD14 and CD11b would contribute to an anti-inflammatory response by providing protection against complement-mediated cell lysis during pathogen recognition and eradication. Overall, the vitamin D3 system may play a role coordinating an anti-inflammatory response pattern of the host complement immune system. This may be particularly important when considering the high rates of preterm births in blacks, a population that exhibits reduced circulating vitamin D3 levels.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 24%
Student > Ph. D. Student 5 17%
Student > Bachelor 4 14%
Student > Master 3 10%
Student > Doctoral Student 2 7%
Other 4 14%
Unknown 4 14%
Readers by discipline Count As %
Medicine and Dentistry 12 41%
Agricultural and Biological Sciences 7 24%
Philosophy 1 3%
Nursing and Health Professions 1 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 2 7%
Unknown 5 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 November 2012.
All research outputs
#17,489,487
of 25,654,806 outputs
Outputs from PLOS ONE
#159,344
of 223,967 outputs
Outputs of similar age
#126,747
of 193,868 outputs
Outputs of similar age from PLOS ONE
#2,955
of 4,772 outputs
Altmetric has tracked 25,654,806 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 223,967 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.8. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 193,868 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4,772 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.