↓ Skip to main content

ERK1/2 Signaling Plays an Important Role in Topoisomerase II Poison-Induced G2/M Checkpoint Activation

Overview of attention for article published in PLOS ONE, November 2012
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

blogs
1 blog
twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
ERK1/2 Signaling Plays an Important Role in Topoisomerase II Poison-Induced G2/M Checkpoint Activation
Published in
PLOS ONE, November 2012
DOI 10.1371/journal.pone.0050281
Pubmed ID
Authors

Ryan H. Kolb, Patrick M. Greer, Phu T. Cao, Kenneth H. Cowan, Ying Yan

Abstract

Topo II poisons, which target topoisomerase II (topo II) to generate enzyme mediated DNA damage, have been commonly used for anti-cancer treatment. While clinical evidence demonstrate a capability of topo II poisons in inducing apoptosis in cancer cells, accumulating evidence also show that topo II poison treatment frequently results in cell cycle arrest in cancer cells, which was associated with subsequent resistance to these treatments. Results in this report indicate that treatment of MCF-7 and T47D breast cancer cells with topo II poisons resulted in an increased phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and an subsequent induction of G2/M cell cycle arrest. Furthermore, inhibition of ERK1/2 activation using specific inhibitors markedly attenuated the topo II poison-induced G2/M arrest and diminished the topo II poison-induced activation of ATR and Chk1 kinases. Moreover, decreased expression of ATR by specific shRNA diminished topo II poison-induced G2/M arrest but had no effect on topo II poison-induced ERK1/2 activation. In contrast, inhibition of ERK1/2 signaling had little, if any, effect on topo II poison-induced ATM activation. In addition, ATM inhibition by either incubation of cells with ATM specific inhibitor or transfection of cells with ATM specific siRNA did not block topo II poison-induced G2/M arrest. Ultimately, inhibition of ERK1/2 signaling greatly enhanced topo II poison-induced apoptosis. These results implicate a critical role for ERK1/2 signaling in the activation of G2/M checkpoint response following topo II poison treatment, which protects cells from topo II poison-induced apoptosis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 35%
Researcher 4 15%
Student > Bachelor 2 8%
Professor 2 8%
Other 2 8%
Other 5 19%
Unknown 2 8%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 38%
Agricultural and Biological Sciences 7 27%
Medicine and Dentistry 3 12%
Pharmacology, Toxicology and Pharmaceutical Science 2 8%
Business, Management and Accounting 1 4%
Other 2 8%
Unknown 1 4%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 November 2019.
All research outputs
#3,894,348
of 22,685,926 outputs
Outputs from PLOS ONE
#55,774
of 193,650 outputs
Outputs of similar age
#26,070
of 159,110 outputs
Outputs of similar age from PLOS ONE
#893
of 4,755 outputs
Altmetric has tracked 22,685,926 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 193,650 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.0. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 159,110 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 4,755 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.