↓ Skip to main content

From wetland to farm and back again: phosphorus dynamics of a proposed restoration project

Overview of attention for article published in Environmental Science & Pollution Research, August 2016
Altmetric Badge

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
From wetland to farm and back again: phosphorus dynamics of a proposed restoration project
Published in
Environmental Science & Pollution Research, August 2016
DOI 10.1007/s11356-016-7485-4
Pubmed ID
Authors

Alan D. Steinman, Mary E. Ogdahl

Abstract

We studied the phosphorus dynamics in a former wetland, which had been converted to a celery farm, and now consists of two shallow, flooded ponds that are being proposed for aquatic habitat restoration. However, like many agricultural areas, this site is plagued by phosphorus legacy issues. Proposed restoration includes hydrologic reconnection of these ponds to its adjacent stream, which are now isolated from one another by an earthen berm, to create a wetland complex. One of the two flooded ponds was partially dredged, whereas the other one has remained undredged. Water column, sediment pore water, and sediment total phosphorus concentrations were significantly greater in the undredged pond compared to the dredged pond, but in both cases phosphorus levels in the water columns (mean TP 929 vs. 133 μg/L in undredged vs. dredged ponds, respectively) would exacerbate downstream water quality issues if hydrologic reconnection occurred without first addressing the phosphorus issue. Sediment isotherm and maximum sorption data indicated that the sediments are close to phosphorus saturation in the undredged pond; simulated dredging of the cores revealed that exposure of deeper sediment layers would increase sorption capacity. Pore water SRP concentrations increased with sediment depth and were significantly greater in the undredged vs. dredged pond at both the 1-4-cm depth (2249 vs. 112 μg/L) and 14-17-cm depth (5506 vs. 222 μg/L). This study provides a framework for other projects that need to balance the competing demands of habitat restoration vs. water quality when restoring wetlands that have been converted to agricultural production.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 28%
Researcher 8 21%
Student > Master 8 21%
Student > Bachelor 2 5%
Professor 1 3%
Other 3 8%
Unknown 6 15%
Readers by discipline Count As %
Environmental Science 17 44%
Agricultural and Biological Sciences 5 13%
Engineering 2 5%
Chemistry 2 5%
Earth and Planetary Sciences 1 3%
Other 3 8%
Unknown 9 23%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 August 2016.
All research outputs
#20,338,537
of 22,884,315 outputs
Outputs from Environmental Science & Pollution Research
#6,408
of 9,175 outputs
Outputs of similar age
#298,065
of 341,481 outputs
Outputs of similar age from Environmental Science & Pollution Research
#116
of 173 outputs
Altmetric has tracked 22,884,315 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,175 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,481 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 173 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.