↓ Skip to main content

Evaluation of Dermal Substitute in a Novel Co-Transplantation Model with Autologous Epidermal Sheet

Overview of attention for article published in PLOS ONE, November 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evaluation of Dermal Substitute in a Novel Co-Transplantation Model with Autologous Epidermal Sheet
Published in
PLOS ONE, November 2012
DOI 10.1371/journal.pone.0049448
Pubmed ID
Authors

Guofeng Huang, Shizhao Ji, Pengfei Luo, Yunqing Zhang, Guangyi Wang, Shihui Zhu, Shichu Xiao, Zhaofan Xia

Abstract

The development of more and more new dermal substitutes requires a reliable and effective animal model to evaluate their safety and efficacy. In this study we constructed a novel animal model using co-transplantation of autologous epidermal sheets with dermal substitutes to repair full-thickness skin defects. Autologous epidermal sheets were obtained by digesting the basement membrane (BM) and dermal components from rat split-thickness skins in Dispase II solution (1.2 u/ml) at 4 °C for 8, 10 and 12 h. H&E, immunohistochemical and live/dead staining showed that the epidermal sheet preserved an intact epidermis without any BM or dermal components, and a high percentage of viable cells (92.10 ± 4.19%) and P63 positive cells (67.43 ± 4.21%) under an optimized condition. Porcine acellular dermal matrixes were co-transplanted with the autologous epidermal sheets to repair full-thickness skin defects in Sprague-Dawley rats. The epidermal sheets survived and completely re-covered the wounds within 3 weeks. Histological staining showed that the newly formed stratified epidermis attached directly onto the dermal matrix. Inflammatory cell infiltration and vascularization of the dermal matrix were not significantly different from those in the subcutaneous implantation model. Collagen IV and laminin distributed continuously at the epidermis and dermal matrix junction 4 weeks after transplantation. Transmission electron microscopy further confirmed the presence of continuous lamina densa and hemidesmosome structures. This novel animal model can be used not only to observe the biocompatibility of dermal substitutes, but also to evaluate their effects on new epidermis and BM formation. Therefore, it is a simple and reliable model for evaluating the safety and efficacy of dermal substitutes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 20%
Researcher 5 20%
Student > Doctoral Student 2 8%
Student > Bachelor 2 8%
Student > Postgraduate 2 8%
Other 5 20%
Unknown 4 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 32%
Medicine and Dentistry 6 24%
Neuroscience 2 8%
Immunology and Microbiology 1 4%
Computer Science 1 4%
Other 1 4%
Unknown 6 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 November 2012.
All research outputs
#15,256,901
of 22,687,320 outputs
Outputs from PLOS ONE
#129,945
of 193,653 outputs
Outputs of similar age
#115,468
of 183,506 outputs
Outputs of similar age from PLOS ONE
#2,991
of 4,904 outputs
Altmetric has tracked 22,687,320 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 193,653 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.0. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 183,506 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4,904 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.