↓ Skip to main content

KCNQ Channels Show Conserved Ethanol Block and Function in Ethanol Behaviour

Overview of attention for article published in PLOS ONE, November 2012
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

blogs
1 blog
twitter
2 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
KCNQ Channels Show Conserved Ethanol Block and Function in Ethanol Behaviour
Published in
PLOS ONE, November 2012
DOI 10.1371/journal.pone.0050279
Pubmed ID
Authors

Sonia Cavaliere, John M. Gillespie, James J. L. Hodge

Abstract

In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ) has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50) = 19.8 mM) being more sensitive than its mammalian ortholog (IC(50) = 42.1 mM). This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 26%
Student > Ph. D. Student 7 16%
Student > Bachelor 4 9%
Professor > Associate Professor 3 7%
Student > Master 3 7%
Other 6 14%
Unknown 9 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 35%
Neuroscience 8 19%
Biochemistry, Genetics and Molecular Biology 5 12%
Medicine and Dentistry 2 5%
Nursing and Health Professions 1 2%
Other 3 7%
Unknown 9 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 January 2013.
All research outputs
#3,682,175
of 22,687,320 outputs
Outputs from PLOS ONE
#45,561
of 193,653 outputs
Outputs of similar age
#37,712
of 277,026 outputs
Outputs of similar age from PLOS ONE
#877
of 4,740 outputs
Altmetric has tracked 22,687,320 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 193,653 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.0. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 277,026 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 4,740 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.