↓ Skip to main content

The Effects of City Streets on an Urban Disease Vector

Overview of attention for article published in PLoS Computational Biology, January 2013
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
8 X users
facebook
1 Facebook page

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
113 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Effects of City Streets on an Urban Disease Vector
Published in
PLoS Computational Biology, January 2013
DOI 10.1371/journal.pcbi.1002801
Pubmed ID
Authors

Corentin M. Barbu, Andrew Hong, Jennifer M. Manne, Dylan S. Small, Javier E. Quintanilla Calderón, Karthik Sethuraman, Víctor Quispe-Machaca, Jenny Ancca-Juárez, Juan G. Cornejo del Carpio, Fernando S. Málaga Chavez, César Náquira, Michael Z. Levy

Abstract

With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban grid on the presence of disease agents. Here, we first propose a method to test for the significance of the impact of streets on vector infestation based on a decomposition of Moran's spatial autocorrelation index; and second, develop a Gaussian Field Latent Class model to finely describe the effect of streets while controlling for cofactors and imperfect detection of vectors. We apply these methods to cross-sectional data of infestation by the Chagas disease vector Triatoma infestans in the city of Arequipa, Peru. Our Moran's decomposition test reveals that the distribution of T. infestans in this urban environment is significantly constrained by streets (p<0.05). With the Gaussian Field Latent Class model we confirm that streets provide a barrier against infestation and further show that greater than 90% of the spatial component of the probability of vector presence is explained by the correlation among houses within city blocks. The city block is thus likely to be an appropriate spatial unit to describe and control T. infestans in an urban context. Characteristics of the urban grid can influence the spatial dynamics of vector borne disease and should be considered when designing public health policies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 113 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 6 5%
Korea, Republic of 1 <1%
Mexico 1 <1%
Thailand 1 <1%
Unknown 104 92%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 19%
Researcher 21 19%
Student > Master 15 13%
Professor > Associate Professor 9 8%
Student > Doctoral Student 8 7%
Other 24 21%
Unknown 15 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 38 34%
Medicine and Dentistry 14 12%
Social Sciences 10 9%
Environmental Science 7 6%
Mathematics 5 4%
Other 24 21%
Unknown 15 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 February 2013.
All research outputs
#7,778,730
of 25,374,917 outputs
Outputs from PLoS Computational Biology
#5,160
of 8,960 outputs
Outputs of similar age
#79,228
of 292,509 outputs
Outputs of similar age from PLoS Computational Biology
#54
of 127 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 8,960 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.4. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 292,509 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 127 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.