↓ Skip to main content

Dietary supplementation with myo‐inositol in women during pregnancy for treating gestational diabetes

Overview of attention for article published in Cochrane database of systematic reviews, September 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
465 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dietary supplementation with myo‐inositol in women during pregnancy for treating gestational diabetes
Published in
Cochrane database of systematic reviews, September 2016
DOI 10.1002/14651858.cd012048.pub2
Pubmed ID
Authors

Julie Brown, Tineke J Crawford, Jane Alsweiler, Caroline A Crowther

Abstract

Gestational diabetes mellitus (GDM) is any degree of glucose intolerance that first presents and is recognised during pregnancy and usually resolves after the birth of the baby. GDM is associated with increased short- and long-term morbidity for the mother and her baby. Treatment usually includes lifestyle modification and/or pharmacological therapy (oral antidiabetic agents or insulin) with the aim to maintain treatment targets for blood glucose concentrations. Finding novel treatment agents which are effective, acceptable and safe for the mother and her baby are important. One such emerging potential intervention is myo-inositol which is an isomer of inositol and occurs endogenously and is found in natural dietary sources such as fruits, vegetables, nuts and cereals. To assess if dietary supplementation with myo-inositol during pregnancy is safe and effective, for the mother and fetus, in treating gestational diabetes. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 April 2016), ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP) (7 April 2016), and reference lists of retrieved studies. All published and unpublished randomised controlled trials or cluster-randomised controlled trials reporting on the use of myo-inositol compared with placebo, no treatment or another intervention for the treatment of women with gestational diabetes. Quasi-randomised and cross-over studies are not eligible for inclusion. Women with pre-existing diabetes were excluded. Two review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. For key outcomes (where data were available), we assessed the quality of the evidence using the GRADE approach. We included two studies (142 women and infants), both were conducted in women in Italy and compared myo-inositol with a placebo control.None of the maternal primary outcomes pre-specified for this review were reported in the included studies: hypertensive disorders of pregnancy; caesarean section; development of subsequent type 2 diabetes mellitus. No data were reported for the majority of this review's maternal secondary outcomes. We could only perform meta-analysis for two secondary outcomes: fasting oral glucose tolerance test and additional pharmacological treatment. All other results are based on data from single studies. Overall, the risk of bias of the included studies was judged to be unclear due to lack of key methodological information.There was no evidence of a difference between treatment groups in need for additional pharmacotherapy or weight gain during pregnancy, although myo-inositol was associated with a lower body mass index (BMI) change (mean difference (MD) -1.50 kg/m(2); 95% confidence interval (CI) -2.35 to -0.65; one trial, n = 73). Myo-inositol was associated with a reduction in the fasting blood glucose concentration at the end of treatment (MD -0.47 mmol/L; 95% CI -0.59 to -0.35; two trials, n = 142 women) compared with the control group. One small trial reported that myo-inositol was associated with a reduction in one-hour post-prandial blood glucose concentration at the end of treatment (MD -0.90 mmol/L; 95% CI -1.73 to -0.07; one trial, n = 73 women) compared with the control group. There was no difference between groups for the two-hour post-prandial blood glucose concentrations between groups (MD -0.70 mmol/L; 95% CI -1.46 to 0.06; one trial, n = 73 women). The one-hour and two-hour blood glucose concentrations show evidence of imprecision associated with wide CIs and small sample size.For the infant, there was no evidence of a difference in the risk for being born large-for-gestational age between the myo-inositol and the control group (risk ratio (RR) 0.36; 95% CI 0.02 to 8.58; one trial, n = 73 infants; low-quality evidence). The evidence was downgraded due to imprecision. This review's other primary outcomes were not reported in the included trials: perinatal mortality (stillbirth and neonatal mortality); mortality of morbidity composite (as defined by the trials); neurosensory disability. Infants in the myo-inositol group were less likely to have neonatal hypoglycaemia compared with the placebo group (RR 0.05; 95% CI 0.00 to 0.85; one study, n = 73 infants; low-quality evidence). There is evidence of imprecision for this outcome with low event rates and small sample size. There was no evidence of a difference between treatment and placebo groups for preterm birth or birthweight. Myo-inositol was associated with a later gestational age at birth compared with the placebo group (MD 2.10 weeks; 95% CI 1.27 to 2.93; one trial, n = 73 infants). No data were reported for any of the other neonatal outcomes for this review.No long-term outcomes were reported for the mother, infant as a child, infant as an adult, or health service outcomes. There are insufficient data to evaluate the effect of myo-inositol for the treatment of gestational diabetes, with no data to examine the majority of outcomes in this review. There do not appear to be any benefits for the infant associated with exposure to myo-inositol such as reduced risk of being born large-for-gestational age. Although the risk of neonatal hypoglycaemia is reduced for the myo-inositol group, there is evidence of imprecision. Evidence from two studies suggested that myo-inositol was associated with a reduced change in maternal BMI and fasting blood sugar concentration compared with placebo. There is a lack of reporting of the clinically meaningful outcomes pre-specified for this review.Uncertainty of the effectiveness of myo-inositol as a treatment for GDM for key maternal and infant outcomes remains and further high- quality trials with appropriate sample sizes are required to further investigate the role of myo-inositol as a treatment or co-treatment for women with gestational diabetes. Future trials should report on the core outcomes for GDM identified in the methods section of this review. Participants of varying ethnicities and with varying risk factors for GDM should be included in future trials. In addition, further trials of myo-inositol for the treatment of GDM should explore the optimal dose, frequency and timing of supplementation, report on adverse effects and assess the long- term effects of this intervention. Economic analysis or health service use and costs should also be included.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 465 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Ethiopia 1 <1%
Unknown 464 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 75 16%
Student > Bachelor 62 13%
Researcher 47 10%
Student > Ph. D. Student 41 9%
Other 22 5%
Other 71 15%
Unknown 147 32%
Readers by discipline Count As %
Medicine and Dentistry 143 31%
Nursing and Health Professions 57 12%
Psychology 21 5%
Pharmacology, Toxicology and Pharmaceutical Science 16 3%
Social Sciences 13 3%
Other 53 11%
Unknown 162 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 March 2018.
All research outputs
#7,811,404
of 25,457,297 outputs
Outputs from Cochrane database of systematic reviews
#8,625
of 11,499 outputs
Outputs of similar age
#112,521
of 345,438 outputs
Outputs of similar age from Cochrane database of systematic reviews
#177
of 220 outputs
Altmetric has tracked 25,457,297 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 11,499 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 40.0. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,438 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 220 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.