↓ Skip to main content

Vitamin D-binding Protein in Cerebrospinal Fluid is Associated with Multiple Sclerosis Progression

Overview of attention for article published in Molecular Neurobiology, January 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

twitter
8 X users
facebook
4 Facebook pages

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Vitamin D-binding Protein in Cerebrospinal Fluid is Associated with Multiple Sclerosis Progression
Published in
Molecular Neurobiology, January 2013
DOI 10.1007/s12035-012-8387-1
Pubmed ID
Authors

Mingchong Yang, Zhaoyu Qin, YanYan Zhu, Yun Li, Yanjiang Qin, Yongsheng Jing, Shilian Liu

Abstract

Multiple sclerosis is a neurological disorder that presents with symptoms including inflammation, neurodegeneration, and demyelination of the central nervous system (CNS). Secondary progressive multiple sclerosis (SPMS) manifests with serious physical disability. To quantitatively analyze differential protein expression in patients with SPMS, we performed two-dimensional fluorescence difference in-gel electrophoresis, followed by mass spectrometry on the cerebrospinal fluid of these patients and patients with other neurological diseases. Vitamin D-binding protein (DBP), gelsolin, albumin, etc. showed more than a 1.5-fold difference between the two groups. Based on these results, an experimental allergic encephalomyelitis (EAE) model of multiple sclerosis in Lewis rats was used to investigate DBP's role in the disease. Protein levels, mRNA transcripts, and ligands of DBP in different regions of the CNS were evaluated under various vitamin D intake levels. Here, DBP levels increased in the experimental rat groups compared to the control groups regardless of vitamin D intake. Moreover, DBP mRNA levels varied in different parts of the CNS including spinal cords in the experimental groups. The observed differences between DBP protein and mRNA levels in the experimental groups' spinal cords could be derived from the disruption of the blood-brain barrier. Furthermore, an interaction between DBP and actin was confirmed using coimmunoprecipitation and western blot. These results indicate a role for DBP in the actin scavenge system. Moreover, in the experimental group that received oral vitamin D3 supplement, we observed both delayed onset and diminished severity of the disease. When DBP was upregulated, however, the benefits from the vitamin D3 supplements were lost. Thus, we inferred that high levels of DBP were adverse to recovery. In conclusion, here we observed upregulated DBP in the cerebrospinal fluid could serve as a specific diagnostic biomarker for the progression of multiple sclerosis. Next, we demonstrate the vital function of increased levels of free vitamin D metabolites for multiple sclerosis treatment. Finally, vitamin D supplements may be particularly beneficial for SPMS patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Canada 1 1%
Unknown 69 97%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 20%
Researcher 9 13%
Student > Ph. D. Student 8 11%
Student > Bachelor 6 8%
Student > Postgraduate 5 7%
Other 16 23%
Unknown 13 18%
Readers by discipline Count As %
Medicine and Dentistry 18 25%
Agricultural and Biological Sciences 8 11%
Biochemistry, Genetics and Molecular Biology 6 8%
Neuroscience 5 7%
Nursing and Health Professions 4 6%
Other 11 15%
Unknown 19 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 January 2013.
All research outputs
#4,394,562
of 22,693,205 outputs
Outputs from Molecular Neurobiology
#1,052
of 3,430 outputs
Outputs of similar age
#48,039
of 279,188 outputs
Outputs of similar age from Molecular Neurobiology
#3
of 16 outputs
Altmetric has tracked 22,693,205 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,430 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,188 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.