↓ Skip to main content

NA Proteins of Influenza A Viruses H1N1/2009, H5N1, and H9N2 Show Differential Effects on Infection Initiation, Virus Release, and Cell-Cell Fusion

Overview of attention for article published in PLOS ONE, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
NA Proteins of Influenza A Viruses H1N1/2009, H5N1, and H9N2 Show Differential Effects on Infection Initiation, Virus Release, and Cell-Cell Fusion
Published in
PLOS ONE, January 2013
DOI 10.1371/journal.pone.0054334
Pubmed ID
Authors

Quanjiao Chen, Shengping Huang, Jianjun Chen, Shaoqiong Zhang, Ze Chen

Abstract

Two surface glycoproteins of influenza virus, haemagglutinin (HA) and neuraminidase (NA), play opposite roles in terms of their interaction with host sialic acid receptors. HA attaches to sialic acid on host cell surface receptors to initiate virus infection while NA removes these sialic acids to facilitate release of progeny virions. This functional opposition requires a balance. To explore what might happen when NA of an influenza virus was replaced by one from another isolate or subtype, in this study, we generated three recombinant influenza A viruses in the background of A/PR/8/34 (PR8) (H1N1) and with NA genes obtained respectively from the 2009 pandemic H1N1 virus, a highly pathogenic avian H5N1 virus, and a lowly pathogenic avian H9N2 virus. These recombinant viruses, rPR8-H1N1NA, rPR8-H5N1NA, and rPR8-H9N2NA, were shown to have similar growth kinetics in cells and pathogenicity in mice. However, much more rPR8-H5N1NA and PR8-wt virions were released from chicken erythrocytes than virions of rPR8-H1N1NA and rPR8-H9N2NA after 1 h. In addition, in MDCK cells, rPR8-H5N1NA and rPR8-H9N2NA infected a higher percentage of cells, and induced cell-cell fusion faster and more extensively than PR8-wt and rPR8-H1N1NA did in the early phase of infection. In conclusion, NA replacement in this study did not affect virus replication kinetics but had different effects on infection initiation, virus release and fusion of infected cells. These phenomena might be partially due to NA proteins' different specificity to α2-3/2-6-sialylated carbohydrate chains, but the exact mechanism remains to be explored.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 30%
Researcher 6 15%
Student > Bachelor 6 15%
Student > Master 6 15%
Student > Doctoral Student 3 8%
Other 6 15%
Unknown 1 3%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 25%
Immunology and Microbiology 9 23%
Biochemistry, Genetics and Molecular Biology 8 20%
Medicine and Dentistry 5 13%
Business, Management and Accounting 1 3%
Other 5 13%
Unknown 2 5%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 January 2013.
All research outputs
#13,679,281
of 22,693,205 outputs
Outputs from PLOS ONE
#110,627
of 193,724 outputs
Outputs of similar age
#159,924
of 279,188 outputs
Outputs of similar age from PLOS ONE
#2,682
of 5,005 outputs
Altmetric has tracked 22,693,205 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 193,724 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.0. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,188 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5,005 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.