↓ Skip to main content

Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions

Overview of attention for article published in BMC Microbiology, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions
Published in
BMC Microbiology, September 2016
DOI 10.1186/s12866-016-0832-2
Pubmed ID
Authors

Michelle Sze-Fan Tan, Sean C. Moore, Rico F. Tabor, Narelle Fegan, Sadequr Rahman, Gary A. Dykes

Abstract

Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 23%
Researcher 4 18%
Student > Ph. D. Student 3 14%
Student > Postgraduate 3 14%
Professor > Associate Professor 2 9%
Other 1 5%
Unknown 4 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 36%
Environmental Science 2 9%
Arts and Humanities 1 5%
Veterinary Science and Veterinary Medicine 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Other 3 14%
Unknown 6 27%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 September 2016.
All research outputs
#4,233,390
of 8,389,481 outputs
Outputs from BMC Microbiology
#640
of 1,390 outputs
Outputs of similar age
#127,783
of 251,972 outputs
Outputs of similar age from BMC Microbiology
#33
of 69 outputs
Altmetric has tracked 8,389,481 research outputs across all sources so far. This one is in the 46th percentile – i.e., 46% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,390 research outputs from this source. They receive a mean Attention Score of 3.2. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 251,972 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 69 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.