↓ Skip to main content

Developmental and Environmental Regulation of Aquaporin Gene Expression across Populus Species: Divergence or Redundancy?

Overview of attention for article published in PLOS ONE, February 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Developmental and Environmental Regulation of Aquaporin Gene Expression across Populus Species: Divergence or Redundancy?
Published in
PLOS ONE, February 2013
DOI 10.1371/journal.pone.0055506
Pubmed ID
Authors

David Cohen, Marie-Béatrice Bogeat-Triboulot, Silvère Vialet-Chabrand, Rémy Merret, Pierre-Emmanuel Courty, Sébastien Moretti, François Bizet, Agnès Guilliot, Irène Hummel

Abstract

Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Uruguay 1 2%
France 1 2%
Canada 1 2%
Unknown 47 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 36%
Researcher 7 14%
Student > Master 4 8%
Professor 4 8%
Professor > Associate Professor 3 6%
Other 6 12%
Unknown 8 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 32 64%
Biochemistry, Genetics and Molecular Biology 4 8%
Arts and Humanities 1 2%
Unspecified 1 2%
Business, Management and Accounting 1 2%
Other 1 2%
Unknown 10 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 February 2013.
All research outputs
#12,869,210
of 22,694,633 outputs
Outputs from PLOS ONE
#100,289
of 193,729 outputs
Outputs of similar age
#152,739
of 282,906 outputs
Outputs of similar age from PLOS ONE
#2,415
of 5,040 outputs
Altmetric has tracked 22,694,633 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 193,729 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.0. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 282,906 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5,040 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.