↓ Skip to main content

A spherical-plot solution to linking acceleration metrics with animal performance, state, behaviour and lifestyle

Overview of attention for article published in Movement Ecology, September 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)

Mentioned by

twitter
9 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
158 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A spherical-plot solution to linking acceleration metrics with animal performance, state, behaviour and lifestyle
Published in
Movement Ecology, September 2016
DOI 10.1186/s40462-016-0088-3
Pubmed ID
Authors

Rory P. Wilson, Mark D. Holton, James S. Walker, Emily L. C. Shepard, D. Mike Scantlebury, Vianney L. Wilson, Gwendoline I. Wilson, Brenda Tysse, Mike Gravenor, Javier Ciancio, Melitta A. McNarry, Kelly A. Mackintosh, Lama Qasem, Frank Rosell, Patricia M. Graf, Flavio Quintana, Agustina Gomez-Laich, Juan-Emilio Sala, Christina C. Mulvenna, Nicola J. Marks, Mark W. Jones

Abstract

We are increasingly using recording devices with multiple sensors operating at high frequencies to produce large volumes of data which are problematic to interpret. A particularly challenging example comes from studies on animals and humans where researchers use animal-attached accelerometers on moving subjects to attempt to quantify behaviour, energy expenditure and condition. The approach taken effectively concatinated three complex lines of acceleration into one visualization that highlighted patterns that were otherwise not obvious. The summation of data points within sphere facets and presentation into histograms on the sphere surface effectively dealt with data occlusion. Further frequency binning of data within facets and representation of these bins as discs on spines radiating from the sphere allowed patterns in dynamic body accelerations (DBA) associated with different postures to become obvious. We examine the extent to which novel, gravity-based spherical plots can produce revealing visualizations to incorporate the complexity of such multidimensional acceleration data using a suite of different acceleration-derived metrics with a view to highlighting patterns that are not obvious using current approaches. The basis for the visualisation involved three-dimensional plots of the smoothed acceleration values, which then occupied points on the surface of a sphere. This sphere was divided into facets and point density within each facet expressed as a histogram. Within each facet-dependent histogram, data were also grouped into frequency bins of any desirable parameters, most particularly dynamic body acceleration (DBA), which were then presented as discs on a central spine radiating from the facet. Greater radial distances from the sphere surface indicated greater DBA values while greater disc diameter indicated larger numbers of data points with that particular value. We indicate how this approach links behaviour and proxies for energetics and can inform our identification and understanding of movement-related processes, highlighting subtle differences in movement and its associated energetics. This approach has ramifications that should expand to areas as disparate as disease identification, lifestyle, sports practice and wild animal ecology. UCT Science Faculty Animal Ethics 2014/V10/PR (valid until 2017).

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 158 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Germany 1 <1%
South Africa 1 <1%
Unknown 155 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 37 23%
Student > Master 25 16%
Researcher 23 15%
Student > Bachelor 15 9%
Other 8 5%
Other 28 18%
Unknown 22 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 76 48%
Environmental Science 20 13%
Unspecified 7 4%
Engineering 4 3%
Computer Science 3 2%
Other 19 12%
Unknown 29 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 October 2016.
All research outputs
#6,192,470
of 25,286,324 outputs
Outputs from Movement Ecology
#204
of 381 outputs
Outputs of similar age
#87,367
of 329,891 outputs
Outputs of similar age from Movement Ecology
#4
of 4 outputs
Altmetric has tracked 25,286,324 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 381 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.2. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,891 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.