↓ Skip to main content

Insulin treatment increases myocardial ceramide accumulation and disrupts cardiometabolic function

Overview of attention for article published in Cardiovascular Diabetology, December 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

twitter
21 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Insulin treatment increases myocardial ceramide accumulation and disrupts cardiometabolic function
Published in
Cardiovascular Diabetology, December 2015
DOI 10.1186/s12933-015-0316-y
Pubmed ID
Authors

Aimee E. Hodson, Trevor S. Tippetts, Benjamin T. Bikman

Abstract

States of hyperinsulinemia, particularly insulin resistance and type 2 diabetes mellitus, are becoming remarkably common, with roughly half a billion people likely to suffer from the disorder within the next 15 years. Along with this rise has been an associated increased burden of cardiovascular disease. Considering type 2 diabetics treated with insulin are more likely to suffer from heart complications, we sought to determine the specific effect of insulin on ceramide-dependent cardiometabolic risk factors, including insulin resistance and altered heart mitochondrial physiology. H9c2 cardiomyocytes and adult mice were treated with insulin with or without myriocin to inhibit ceramide biosynthesis. Insulin and glucose changes were tracked throughout the study and mitochondrial bioenergetics was determined in permeabilized cardiomyocytes and myocardium. Herein, we demonstrate that insulin is sufficient to disrupt heart mitochondrial respiration in both isolated cardiomyocytes and whole myocardium, possibly by increasing mitochondrial fission. Further, insulin increases ceramide accrual in a time-dependent manner, which is necessary for insulin-induced alterations in heart mitochondrial respiration and insulin resistance. Collectively, these observations have two implications. First, they indicate a pathological role of insulin in heart complications stemming from mitochondrial disruption. Second, they identify ceramide as a possible mediator of insulin-related heart disorders.

X Demographics

X Demographics

The data shown below were collected from the profiles of 21 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 21%
Student > Ph. D. Student 6 18%
Researcher 5 15%
Student > Bachelor 2 6%
Student > Doctoral Student 2 6%
Other 7 21%
Unknown 4 12%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 24%
Agricultural and Biological Sciences 7 21%
Medicine and Dentistry 7 21%
Engineering 2 6%
Social Sciences 1 3%
Other 2 6%
Unknown 6 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 October 2021.
All research outputs
#3,168,545
of 24,522,750 outputs
Outputs from Cardiovascular Diabetology
#231
of 1,544 outputs
Outputs of similar age
#52,410
of 398,271 outputs
Outputs of similar age from Cardiovascular Diabetology
#3
of 18 outputs
Altmetric has tracked 24,522,750 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,544 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.3. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 398,271 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.