↓ Skip to main content

A novel method for quantifying the rate of embryogenesis uncovers considerable genetic variation for the duration of embryonic development in Drosophila melanogaster

Overview of attention for article published in BMC Ecology and Evolution, October 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A novel method for quantifying the rate of embryogenesis uncovers considerable genetic variation for the duration of embryonic development in Drosophila melanogaster
Published in
BMC Ecology and Evolution, October 2016
DOI 10.1186/s12862-016-0776-z
Pubmed ID
Authors

Barbara Horváth, Andrea J. Betancourt, Alex T. Kalinka

Abstract

Embryogenesis is a highly conserved, canalized process, and variation in the duration of embryogenesis (DOE), i.e., time from egg lay to hatching, has a potentially profound effect on the outcome of within- and between-species competition. There is both intra- and inter-specific variation in this trait, which may provide important fuel for evolutionary processes, particularly adaptation. However, while genetic variation underlying simpler morphological traits, or with large phenotypic effects is well described in the literature, less is known about the underlying genetics of traits, such as DOE, partly due to a lack of tools with which to study them. Here, we establish a novel microscope-based assay to survey genetic variation for the duration of embryogenesis (DOE). First, to establish the potential importance of DOE in competitive fitness, we performed a set of experiments where we experimentally manipulated the time until hatching, and show that short hatching times result in priority effect in the form of improved larval competitive ability. We then use our assay to measure DOE for 43 strains from the Drosophila Genetic Reference Panel (DGRP). Our assay greatly simplifies the measurement of DOE, making it possible to precisely quantify this trait for 59,295 individual embryos (mean ± S.D. of 1103 ± 293 per DGRP strain, and 1002 ± 203 per control). We find extensive genetic variation in DOE, with a 15 % difference in rate between the slowest and fastest strains measured, and 89 % of phenotypic variation due to DGRP strain. Using sequence information from the DGRP, we perform a genome-wide association study, which suggests that some well-known developmental genes affect the speed of embryonic development. We showed that the duration of embryogenesis (DOE) can be efficiently and precisely measured in Drosophila, and that the DGRP strains show remarkable variation in DOE. A genome-wide analysis suggests that some well-known developmental genes are potentially associated with DOE. Further functional assays, or transcriptomic analysis of embryos from the DGRP, can validate the role of our candidates in early developmental processes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 3%
Unknown 36 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 35%
Researcher 6 16%
Student > Master 4 11%
Other 2 5%
Student > Doctoral Student 2 5%
Other 3 8%
Unknown 7 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 49%
Biochemistry, Genetics and Molecular Biology 8 22%
Neuroscience 2 5%
Unknown 9 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 October 2016.
All research outputs
#22,759,802
of 25,374,917 outputs
Outputs from BMC Ecology and Evolution
#3,511
of 3,714 outputs
Outputs of similar age
#287,450
of 327,752 outputs
Outputs of similar age from BMC Ecology and Evolution
#85
of 93 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,752 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 93 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.