↓ Skip to main content

Glycoside hydrolases family 20 (GH20) represent putative virulence factors that are shared by animal pathogenic oomycetes, but are absent in phytopathogens

Overview of attention for article published in BMC Microbiology, October 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 tweeters
facebook
1 Facebook page

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Glycoside hydrolases family 20 (GH20) represent putative virulence factors that are shared by animal pathogenic oomycetes, but are absent in phytopathogens
Published in
BMC Microbiology, October 2016
DOI 10.1186/s12866-016-0856-7
Pubmed ID
Authors

Isabel E. Olivera, Katrina C. Fins, Sara A. Rodriguez, Sumayyah K. Abiff, Jaime L. Tartar, Aurélien Tartar

Abstract

Although interest in animal pathogenic oomycetes is increasing, the molecular basis mediating oomycete-animal relationships remains virtually unknown. Crinkler (CRN) genes, which have been traditionally associated with the cytotoxic activity displayed by plant pathogenic oomycetes, were recently detected in transcriptome sequences from the entomopathogenic oomycete Lagenidium giganteum, suggesting that these genes may represent virulence factors conserved in both animal and plant pathogenic oomycetes. In order to further characterize the L. giganteum pathogenome, an on-going genomic survey was mined to reveal novel putative virulence factors, including canonical oomycete effectors Crinkler 13 (CRN13) orthologs. These novel sequences provided a basis to initiate gene expression analyses and determine if the proposed L. giganteum virulence factors are differentially expressed in the presence of mosquito larvae (Aedes aegypti). Sequence analyses revealed that L. giganteum express CRN13 transcripts. The predicted proteins, like other L. giganteum CRNs, contained a conserved LYLA motif at the N terminal, but did not display signal peptides. In contrast, other potential virulence factors, such as Glycoside Hydrolases family 20 (hexosaminidase) and 37 (trehalase) proteins (GH20 and GH37), contained identifiable signal peptides. Genome mining demonstrated that GH20 genes are absent from phytopathogenic oomycete genomes, and that the L. giganteum GH20 sequence is the only reported peronosporalean GH20 gene. All other oomycete GH20 homologs were retrieved from animal pathogenic, saprolegnialean genomes. Furthermore, phylogenetic analyses demonstrated that saprolegnialean and peronosporalean GH20 protein sequences clustered in unrelated clades. The saprolegnialean GH20 sequences appeared as a strongly supported, monophyletic group nested within an arthropod-specific clade, suggesting that this gene was acquired via a lateral gene transfer event from an insect or crustacean genome. In contrast, the L. giganteum GH20 protein sequence appeared as a sister taxon to a plant-specific clade that included exochitinases with demonstrated insecticidal activities. Finally, gene expression analyses demonstrated that the L. giganteum GH20 gene expression level is significantly modulated in the presence of mosquito larvae. In agreement with the protein secretion predictions, CRN transcripts did not show any differential expression. These results identified GH20 enzymes, and not CRNs, as potential pathogenicity factors shared by all animal pathogenic oomycetes.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 27%
Student > Bachelor 3 20%
Researcher 3 20%
Student > Postgraduate 1 7%
Unknown 4 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 40%
Agricultural and Biological Sciences 3 20%
Psychology 1 7%
Immunology and Microbiology 1 7%
Unknown 4 27%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 October 2016.
All research outputs
#6,190,356
of 8,566,293 outputs
Outputs from BMC Microbiology
#880
of 1,409 outputs
Outputs of similar age
#164,472
of 255,238 outputs
Outputs of similar age from BMC Microbiology
#39
of 72 outputs
Altmetric has tracked 8,566,293 research outputs across all sources so far. This one is in the 24th percentile – i.e., 24% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,409 research outputs from this source. They receive a mean Attention Score of 3.2. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 255,238 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 72 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.