↓ Skip to main content

Identification of Sensitive Serum microRNA Biomarkers for Radiation Biodosimetry

Overview of attention for article published in PLOS ONE, February 2013
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

news
3 news outlets
blogs
1 blog
twitter
7 X users
patent
3 patents
facebook
1 Facebook page

Readers on

mendeley
111 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of Sensitive Serum microRNA Biomarkers for Radiation Biodosimetry
Published in
PLOS ONE, February 2013
DOI 10.1371/journal.pone.0057603
Pubmed ID
Authors

Naduparambil Korah Jacob, James V. Cooley, Tamara N. Yee, Jidhin Jacob, Hansjuerg Alder, Priyankara Wickramasinghe, Kirsteen H. Maclean, Arnab Chakravarti

Abstract

Exposure to ionizing radiation through environmental, occupational or a nuclear reactor accident such as the recent Fukushima Daiichi incident often results in major consequences to human health. The injury caused by radiation can manifest as acute radiation syndromes within weeks in organs with proliferating cells such as hematopoietic and gastrointestinal systems. Cancers, fibrosis and degenerative diseases are also reported in organs with differentiated cells, months or years later. Studies conducted on atom bomb survivors, nuclear reactor workers and animal models have shown a direct correlation of these effects with the absorbed dose. Physical dosimeters and the available radio-responsive biologics in body fluids, whose responses are rather indirect, have limitations to accurately evaluate the extent of post exposure damage. We have used an amplification-free, hybridization based quantitative assay utilizing the nCounter multiplex platform developed by nanoString Technologies to compare the levels of over 600 miRNAs in serum from mice irradiated at a range of 1 to 12 Gy at 24 and 48 hr time points. Development of a novel normalization strategy using multiple spike-in oligonucleotides allowed accurate measurement of radiation dose and time dependent changes in serum miRNAs. The response of several evolutionarily conserved miRNAs abundant in serum, were found to be robust and sensitive in the dose range relevant for medical triage and in patients who receive total body radiation as preparative regimen for bone marrow transplantation. Notably, miRNA-150, abundant in lymphocytes, exhibited a dose and time dependent decrease in serum, which we propose as a sensitive marker indicative of lymphocyte depletion and bone marrow damage. Our study has identified several markers useful for evaluation of an individual's response by minimally invasive methods, relevant to triage in case of a radiation accident and evaluation of toxicity and response during and after therapeutic radiation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 111 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 2 2%
United Kingdom 1 <1%
Germany 1 <1%
Unknown 107 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 31 28%
Student > Ph. D. Student 17 15%
Student > Master 10 9%
Student > Postgraduate 6 5%
Professor > Associate Professor 6 5%
Other 17 15%
Unknown 24 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 32 29%
Biochemistry, Genetics and Molecular Biology 18 16%
Medicine and Dentistry 17 15%
Physics and Astronomy 3 3%
Psychology 3 3%
Other 13 12%
Unknown 25 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 43. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 September 2019.
All research outputs
#805,351
of 22,699,621 outputs
Outputs from PLOS ONE
#11,146
of 193,796 outputs
Outputs of similar age
#5,973
of 193,194 outputs
Outputs of similar age from PLOS ONE
#268
of 5,363 outputs
Altmetric has tracked 22,699,621 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 193,796 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.0. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 193,194 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 5,363 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.