↓ Skip to main content

Orbit/CLASP Is Required for Germline Cyst Formation through Its Developmental Control of Fusomes and Ring Canals in Drosophila Males

Overview of attention for article published in PLOS ONE, March 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Orbit/CLASP Is Required for Germline Cyst Formation through Its Developmental Control of Fusomes and Ring Canals in Drosophila Males
Published in
PLOS ONE, March 2013
DOI 10.1371/journal.pone.0058220
Pubmed ID
Authors

Chie Miyauchi, Daishi Kitazawa, Itaru Ando, Daisuke Hayashi, Yoshihiro H. Inoue

Abstract

Orbit, a Drosophila ortholog of microtubule plus-end enriched protein CLASP, plays an important role in many developmental processes involved in microtubule dynamics. Previous studies have shown that Orbit is required for asymmetric stem cell division and cystocyte divisions in germline cysts and for the development of microtubule networks that interconnect oocyte and nurse cells during oogenesis. Here, we examined the cellular localization of Orbit and its role in cyst formation during spermatogenesis. In male germline stem cells, distinct localization of Orbit was first observed on the spectrosome, which is a spherical precursor of the germline-specific cytoskeleton known as the fusome. In dividing stem cells and spermatogonia, Orbit was localized around centrosomes and on kinetochores and spindle microtubules. After cytokinesis, Orbit remained localized on ring canals, which are cytoplasmic bridges between the cells. Thereafter, it was found along fusomes, extending through the ring canal toward all spermatogonia in a cyst. Fusome localization of Orbit was not affected by microtubule depolymerization. Instead, our fluorescence resonance energy transfer experiments suggested that Orbit is closely associated with F-actin, which is abundantly found in fusomes. Surprisingly, F-actin depolymerization influenced neither fusome organization nor Orbit localization on the germline-specific cytoskeleton. We revealed that two conserved regions of Orbit are required for fusome localization. Using orbit hypomorphic mutants, we showed that the protein is required for ring canal formation and for fusome elongation mediated by the interaction of newly generated fusome plugs with the pre-existing fusome. The orbit mutation also disrupted ring canal clustering, which is essential for folding of the spermatogonia after cytokinesis. Orbit accumulates around centrosomes at the onset of spermatogonial mitosis and is required for the capture of one of the duplicated centrosomes onto the fusome. Moreover, Orbit is involved in the proper orientation of spindles towards fusomes during synchronous mitosis of spermatogonial cysts.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 28%
Researcher 7 19%
Other 2 6%
Student > Bachelor 2 6%
Student > Doctoral Student 2 6%
Other 3 8%
Unknown 10 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 36%
Agricultural and Biological Sciences 12 33%
Neuroscience 2 6%
Unknown 9 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 March 2013.
All research outputs
#14,775,080
of 22,745,803 outputs
Outputs from PLOS ONE
#123,439
of 194,149 outputs
Outputs of similar age
#118,017
of 195,279 outputs
Outputs of similar age from PLOS ONE
#3,116
of 5,439 outputs
Altmetric has tracked 22,745,803 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 194,149 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.1. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 195,279 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5,439 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.