↓ Skip to main content

Proteomic profiling of retinoblastoma by high resolution mass spectrometry

Overview of attention for article published in Clinical Proteomics, October 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Proteomic profiling of retinoblastoma by high resolution mass spectrometry
Published in
Clinical Proteomics, October 2016
DOI 10.1186/s12014-016-9128-7
Pubmed ID
Authors

Ravikanth Danda, Kalaivani Ganapathy, Gajanan Sathe, Anil K. Madugundu, Sharavan Ramachandran, Uma Maheswari Krishnan, Vikas Khetan, Pukhraj Rishi, T. S. Keshava Prasad, Akhilesh Pandey, Subramanian Krishnakumar, Harsha Gowda, Sailaja V. Elchuri

Abstract

Retinoblastoma is an ocular neoplastic cancer caused primarily due to the mutation/deletion of RB1 gene. Due to the rarity of the disease very limited information is available on molecular changes in primary retinoblastoma. High throughput analysis of retinoblastoma transcriptome is available however the proteomic landscape of retinoblastoma remains unexplored. In the present study we used high resolution mass spectrometry-based quantitative proteomics to identify proteins associated with pathogenesis of retinoblastoma. We used five pooled normal retina and five pooled retinoblastoma tissues to prepare tissue lysates. Equivalent amount of proteins from each group was trypsin digested and labeled with iTRAQ tags. The samples were analyzed on Orbitrap Velos mass spectrometer. We further validated few of the differentially expressed proteins by immunohistochemistry on primary tumors. We identified and quantified a total of 3587 proteins in retinoblastoma when compared with normal adult retina. In total, we identified 899 proteins that were differentially expressed in retinoblastoma with a fold change of ≥2 of which 402 proteins were upregulated and 497 were down regulated. Insulin growth factor 2 mRNA binding protein 1 (IGF2BP1), chromogranin A, fetuin A (ASHG), Rac GTPase-activating protein 1 and midkine that were found to be overexpressed in retinoblastoma were further confirmed by immunohistochemistry by staining 15 independent retinoblastoma tissue sections. We further verified the effect of IGF2BP1 on cell proliferation and migration capability of a retinoblastoma cell line using knockdown studies. In the present study mass spectrometry-based quantitative proteomic approach was applied to identify proteins differentially expressed in retinoblastoma tumor. This study identified the mitochondrial dysfunction and lipid metabolism pathways as the major pathways to be deregulated in retinoblastoma. Further knockdown studies of IGF2BP1 in retinoblastoma cell lines revealed it as a prospective therapeutic target for retinoblastoma.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 28 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 28%
Researcher 4 14%
Student > Bachelor 3 10%
Student > Master 2 7%
Unspecified 1 3%
Other 2 7%
Unknown 9 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 17%
Biochemistry, Genetics and Molecular Biology 5 17%
Medicine and Dentistry 4 14%
Pharmacology, Toxicology and Pharmaceutical Science 2 7%
Unspecified 1 3%
Other 4 14%
Unknown 8 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 November 2016.
All research outputs
#14,867,424
of 22,896,955 outputs
Outputs from Clinical Proteomics
#164
of 285 outputs
Outputs of similar age
#187,935
of 314,045 outputs
Outputs of similar age from Clinical Proteomics
#6
of 14 outputs
Altmetric has tracked 22,896,955 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 285 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.2. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,045 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.