↓ Skip to main content

Biobanking and Cryopreservation of Stem Cells

Overview of attention for book
Cover of 'Biobanking and Cryopreservation of Stem Cells'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Key Issues Related to Cryopreservation and Storage of Stem Cells and Cancer Stem Cells: Protecting Biological Integrity
  3. Altmetric Badge
    Chapter 2 Cryopreservation: Evolution of Molecular Based Strategies
  4. Altmetric Badge
    Chapter 3 Fundamental Principles of Stem Cell Banking
  5. Altmetric Badge
    Chapter 4 Biobanking: An Important Resource for Precision Medicine in Glioblastoma
  6. Altmetric Badge
    Chapter 5 Slow Cooling Cryopreservation Optimized to Human Pluripotent Stem Cells
  7. Altmetric Badge
    Chapter 6 Cryopreservation in Closed Bag Systems as an Alternative to Clean Rooms for Preparations of Peripheral Blood Stem Cells
  8. Altmetric Badge
    Chapter 7 Cryopreserved or Fresh Mesenchymal Stromal Cells: Only a Matter of Taste or Key to Unleash the Full Clinical Potential of MSC Therapy?
  9. Altmetric Badge
    Chapter 8 Biobanking of Human Mesenchymal Stem Cells: Future Strategy to Facilitate Clinical Applications
  10. Altmetric Badge
    Chapter 9 Menstrual Blood-Derived Stem Cells: In Vitro and In Vivo Characterization of Functional Effects
  11. Altmetric Badge
    Chapter 10 Cryopreservation of Human Pluripotent Stem Cell-Derived Cardiomyocytes: Strategies, Challenges, and Future Directions
  12. Altmetric Badge
    Chapter 11 Cryopreserved Adipose Tissue-Derived Stromal/Stem Cells: Potential for Applications in Clinic and Therapy
  13. Altmetric Badge
    Chapter 12 Banking of Adipose- and Cord Tissue-Derived Stem Cells: Technical and Regulatory Issues
  14. Altmetric Badge
    Chapter 13 Mature Oocyte Cryopreservation for Fertility Preservation
  15. Altmetric Badge
    Chapter 14 Stem Cell Banking and Its Impact on Cardiac Regenerative Medicine
  16. Altmetric Badge
    Chapter 15 Preservation of Ocular Epithelial Limbal Stem Cells: The New Frontier in Regenerative Medicine
  17. Altmetric Badge
    Chapter 16 Cryopreservation of Hair-Follicle Associated Pluripotent (HAP) Stem Cells Maintains Differentiation and Hair-Growth Potential
  18. Altmetric Badge
    Chapter 17 Cryopreservation and Banking of Dental Stem Cells
Attention for Chapter 6: Cryopreservation in Closed Bag Systems as an Alternative to Clean Rooms for Preparations of Peripheral Blood Stem Cells
Altmetric Badge

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Cryopreservation in Closed Bag Systems as an Alternative to Clean Rooms for Preparations of Peripheral Blood Stem Cells
Chapter number 6
Book title
Biobanking and Cryopreservation of Stem Cells
Published in
Advances in experimental medicine and biology, November 2016
DOI 10.1007/978-3-319-45457-3_6
Pubmed ID
Book ISBNs
978-3-31-945455-9, 978-3-31-945457-3
Authors

Silvia Spoerl, Robert Peter, Angela M. Krackhardt

Editors

Feridoun Karimi-Busheri, Michael Weinfeld

Abstract

Autologous and allogeneic stem cell transplantation (SCT) represents a therapeutic option widely used for hematopoietic malignancies. One important milestone in the development of this treatment strategy was the development of effective cryopreservation technologies resulting in a high quality with respect to cell viability as well as lack of contamination of the graft.Stem cell preparations have been initially performed within standard laboratories as it is routinely still the case in many countries. With the emergence of cleanrooms, manufacturing of stem cell preparations within these facilities has become a new standard mandatory in Europe. However, due to high costs and laborious procedures, novel developments recently emerged using closed bag systems as reliable alternatives to conventional cleanrooms. Several hurdles needed to be overcome including the addition of the cryoprotectant dimethylsulfoxide (DMSO) as a relevant manipulation. As a result of the development, closed bag systems proved to be comparable in terms of product quality and patient outcome to cleanroom products. They also comply with the strict regulations of good manufacturing practice.With closed systems being available, costs and efforts of a cleanroom facility may be substantially reduced in the future. The process can be easily extended for other cell preparations requiring minor modifications as donor lymphocyte preparations. Moreover, novel developments may provide solutions for the production of advanced-therapy medicinal products in closed systems.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Other 5 31%
Student > Ph. D. Student 3 19%
Professor 1 6%
Student > Master 1 6%
Unknown 6 38%
Readers by discipline Count As %
Medicine and Dentistry 4 25%
Engineering 3 19%
Agricultural and Biological Sciences 1 6%
Biochemistry, Genetics and Molecular Biology 1 6%
Unknown 7 44%