↓ Skip to main content

Utility of an alternative bicycle commute route of lower proximity to motorised traffic in decreasing exposure to ultra-fine particles, respiratory symptoms and airway inflammation – a structured…

Overview of attention for article published in Environmental Health, April 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
91 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Utility of an alternative bicycle commute route of lower proximity to motorised traffic in decreasing exposure to ultra-fine particles, respiratory symptoms and airway inflammation – a structured exposure experiment
Published in
Environmental Health, April 2013
DOI 10.1186/1476-069x-12-29
Pubmed ID
Authors

Tom Cole-Hunter, Rohan Jayaratne, Ian Stewart, Matthew Hadaway, Lidia Morawska, Colin Solomon

Abstract

BACKGROUND: Bicycle commuting in an urban environment of high air pollution is known as a potential health risk, especially for susceptible individuals. While risk management strategies aimed to reduce motorised traffic emissions exposure have been suggested, limited studies have assessed the utility of such strategies in real-world circumstances.Objectives: The potential of lowering exposure to ultrafine particles (UFP; < 0.1 mum) during bicycle commuting by reducing proximity to motorised traffic was investigated with real-time air pollution and intermittent acute inflammatory measurements in healthy individuals using their typical, and an alternative, bicycle commute route. METHODS: Thirty-five healthy adults (mean +/- SD: age = 39 +/- 11 yr; 29% female) completed two return trips, one each of their typical route (HIGH) and a pre-determined alternative route of lower proximity to motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in-commute in real-time. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. RESULTS: In LOW, compared to HIGH, there was a significant decrease in mean PNC (1.91 x e4 +/- 0.93 x e4 ppcc vs. 2.95 x e4 +/- 1.50 x e4 ppcc; p <= 0.001), the incidence of in-commute offensive odour detection (42 vs. 56%; p = 0.019), and the incidence of dust and soot observation (33 vs. 47%; p = 0.038) and nasopharyngeal irritation (31 vs. 41%; p = 0.007). There were no significant differences between LOW and HIGH in the commute distance and duration (12.8 +/- 7.1 vs. 12.0 +/- 6.9 km and 44 +/- 17 vs. 42 +/- 17 min, respectively), or indices of acute airway inflammation. CONCLUSIONS: Exposure to PNC (and the incidence of offensive odour and nasopharyngeal irritation) can be significantly lowered when utilising a route of reduced proximity to motorised traffic whilst bicycle commuting (without significantly affecting commute distance or duration), which may bring important benefits for both healthy and susceptible individuals.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 91 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 90 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 18 20%
Researcher 15 16%
Student > Ph. D. Student 15 16%
Student > Bachelor 10 11%
Student > Doctoral Student 3 3%
Other 11 12%
Unknown 19 21%
Readers by discipline Count As %
Environmental Science 23 25%
Medicine and Dentistry 10 11%
Agricultural and Biological Sciences 7 8%
Engineering 6 7%
Social Sciences 5 5%
Other 16 18%
Unknown 24 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 December 2015.
All research outputs
#2,200,034
of 22,705,019 outputs
Outputs from Environmental Health
#404
of 1,482 outputs
Outputs of similar age
#19,410
of 199,277 outputs
Outputs of similar age from Environmental Health
#5
of 20 outputs
Altmetric has tracked 22,705,019 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,482 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 31.3. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 199,277 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.