↓ Skip to main content

Critical Role of the Fusion Protein Cytoplasmic Tail Sequence in Parainfluenza Virus Assembly

Overview of attention for article published in PLOS ONE, April 2013
Altmetric Badge

Mentioned by

facebook
2 Facebook pages

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Critical Role of the Fusion Protein Cytoplasmic Tail Sequence in Parainfluenza Virus Assembly
Published in
PLOS ONE, April 2013
DOI 10.1371/journal.pone.0061281
Pubmed ID
Authors

Raychel Stone, Toru Takimoto

Abstract

Interactions between viral glycoproteins, matrix protein and nucleocapsid sustain assembly of parainfluenza viruses at the plasma membrane. Although the protein interactions required for virion formation are considered to be highly specific, virions lacking envelope glycoprotein(s) can be produced, thus the molecular interactions driving viral assembly and production are still unclear. Sendai virus (SeV) and human parainfluenza virus type 1 (hPIV1) are highly similar in structure, however, the cytoplasmic tail sequences of the envelope glycoproteins (HN and F) are relatively less conserved. To unveil the specific role of the envelope glycoproteins in viral assembly, we created chimeric SeVs whose HN (rSeVhHN) or HN and F (rSeVh(HN+F)) were replaced with those of hPIV1. rSeVhHN grew as efficiently as wt SeV or hPIV1, suggesting that the sequence difference in HN does not have a significant impact on SeV replication and virion production. In sharp contrast, the growth of rSeVh(HN+F) was significantly impaired compared to rSeVhHN. rSeVh(HN+Fstail) which expresses a chimeric hPIV1 F with the SeV cytoplasmic tail sequence grew similar to wt SeV or rSeVhHN. Further analysis indicated that the F cytoplasmic tail plays a critical role in cell surface expression/accumulation of HN and F, as well as NP and M association at the plasma membrane. Trafficking of nucelocapsids in infected cells was not significantly affected by the origin of F, suggesting that F cytoplasmic tail is not involved in intracellular movement. These results demonstrate the role of the F cytoplasmic tail in accumulation of structural components at the plasma membrane assembly sites.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Other 3 17%
Researcher 3 17%
Student > Ph. D. Student 3 17%
Student > Bachelor 2 11%
Student > Doctoral Student 1 6%
Other 2 11%
Unknown 4 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 44%
Chemistry 2 11%
Biochemistry, Genetics and Molecular Biology 1 6%
Physics and Astronomy 1 6%
Computer Science 1 6%
Other 0 0%
Unknown 5 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 April 2013.
All research outputs
#18,336,865
of 22,707,247 outputs
Outputs from PLOS ONE
#154,127
of 193,889 outputs
Outputs of similar age
#150,615
of 198,792 outputs
Outputs of similar age from PLOS ONE
#3,859
of 5,163 outputs
Altmetric has tracked 22,707,247 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 193,889 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.0. This one is in the 10th percentile – i.e., 10% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 198,792 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5,163 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.