↓ Skip to main content

Oxygen for breathlessness in patients with chronic obstructive pulmonary disease who do not qualify for home oxygen therapy

Overview of attention for article published in Cochrane database of systematic reviews, November 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

twitter
45 tweeters
facebook
2 Facebook pages
wikipedia
1 Wikipedia page

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
109 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Oxygen for breathlessness in patients with chronic obstructive pulmonary disease who do not qualify for home oxygen therapy
Published in
Cochrane database of systematic reviews, November 2016
DOI 10.1002/14651858.cd006429.pub3
Pubmed ID
Authors

Magnus Ekström, Zainab Ahmadi, Anna Bornefalk-Hermansson, Amy Abernethy, David Currow

Abstract

Breathlessness is a cardinal symptom of chronic obstructive pulmonary disease (COPD). Long-term oxygen therapy (LTOT) is given to improve survival time in people with COPD and severe chronic hypoxaemia at rest. The efficacy of oxygen therapy for breathlessness and health-related quality of life (HRQOL) in people with COPD and mild or no hypoxaemia who do not meet the criteria for LTOT has not been established. To determine the efficacy of oxygen versus air in mildly hypoxaemic or non-hypoxaemic patients with COPD in terms of (1) breathlessness; (2) HRQOL; (3) patient preference whether to continue therapy; and (4) oxygen-related adverse events. We searched the Cochrane Airways Group Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and Embase, to 12 July 2016, for randomised controlled trials (RCTs). We handsearched the reference lists of included articles. We included RCTs of the effects of non-invasive oxygen versus air on breathlessness, HRQOL or patient preference to continue therapy among people with COPD and mild or no hypoxaemia (partial pressure of oxygen (PaO2) > 7.3 kPa) who were not already receiving LTOT. Two review authors independently assessed articles for inclusion in the review. Two review authors independently collected and analysed data. We assessed risk of bias by using the Cochrane 'Risk of bias tool'. We pooled effects recorded on different scales as standardised mean differences (SMDs) with 95% confidence intervals (CIs) using random-effects models. Lower SMDs indicated decreased breathlessness and reduced HRQOL. We performed subanalyses and sensitivity analyses and assessed the quality of evidence according to the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. Compared with the previous review, which was published in 2011, we included 14 additional studies (493 participants), excluded one study and included data for meta-analysis of HRQOL. In total, we included in this review 44 studies including 1195 participants, and we included 33 of these (901 participants)in the meta-analysis.We found that breathlessness during exercise or daily activities was reduced by oxygen compared with air (32 studies; 865 participants; SMD -0.34, 95% CI -0.48 to -0.21; I(2) = 37%; low-quality evidence). This translates to a decrease in breathlessness of about 0.7 points on a 0 to 10 numerical rating scale. In contrast, we found no effect of short-burst oxygen given before exercise (four studies; 90 participants; SMD 0.01, 95% CI -0.26 to 0.28; I(2) = 0%; low-quality evidence). Oxygen reduced breathlessness measured during exercise tests (25 studies; 442 participants; SMD -0.34, 95% CI -0.46 to -0.22; I(2) = 29%; moderate-quality evidence), whereas evidence of an effect on breathlessness measured in daily life was limited (two studies; 274 participants; SMD -0.13, 95% CI, -0.37 to 0.11; I(2) = 0%; low-quality evidence).Oxygen did not clearly affect HRQOL (five studies; 267 participants; SMD 0.10, 95% CI -0.06 to 0.26; I(2) = 0%; low-quality evidence). Patient preference and adverse events could not be analysed owing to insufficient data. We are moderately confident that oxygen can relieve breathlessness when given during exercise to mildly hypoxaemic and non-hypoxaemic people with chronic obstructive pulmonary disease who would not otherwise qualify for home oxygen therapy. Most evidence pertains to acute effects during exercise tests, and no evidence indicates that oxygen decreases breathlessness in the daily life setting. Findings show that oxygen does not affect health-related quality of life.

Twitter Demographics

The data shown below were collected from the profiles of 45 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 109 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Netherlands 1 <1%
Unknown 107 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 23 21%
Unspecified 15 14%
Student > Bachelor 12 11%
Researcher 11 10%
Student > Ph. D. Student 10 9%
Other 37 34%
Unknown 1 <1%
Readers by discipline Count As %
Medicine and Dentistry 48 44%
Nursing and Health Professions 20 18%
Unspecified 17 16%
Social Sciences 6 6%
Sports and Recreations 3 3%
Other 14 13%
Unknown 1 <1%

Attention Score in Context

This research output has an Altmetric Attention Score of 32. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 December 2016.
All research outputs
#457,338
of 12,527,219 outputs
Outputs from Cochrane database of systematic reviews
#1,474
of 8,923 outputs
Outputs of similar age
#21,894
of 368,456 outputs
Outputs of similar age from Cochrane database of systematic reviews
#31
of 148 outputs
Altmetric has tracked 12,527,219 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 8,923 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.2. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 368,456 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 148 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.