↓ Skip to main content

RNA-seq-based digital gene expression analysis reveals modification of host defense responses by rice stripe virus during disease symptom development in Arabidopsis

Overview of attention for article published in Virology Journal, December 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RNA-seq-based digital gene expression analysis reveals modification of host defense responses by rice stripe virus during disease symptom development in Arabidopsis
Published in
Virology Journal, December 2016
DOI 10.1186/s12985-016-0663-7
Pubmed ID
Authors

Feng Sun, Peng Fang, Juan Li, Linlin Du, Ying Lan, Tong Zhou, Yongjian Fan, Wenbiao Shen, Yijun Zhou

Abstract

Virus infection induces and suppresses host gene expression on a global level. Rice stripe virus (RSV) is the type species of the genus Tenuivirus and infects rice and Arabidopsis plants. Microarray-based and next generation sequencing-based transcriptomic approaches have been used to study rice-RSV interactions. However, our knowledge of the response of Arabidopsis plants to RSV infection is limited, and it requires further investigation to determine the similarities (or differences) in virus-host interactions between monocot and dicot hosts infected with RSV. We characterized transcriptome changes in Arabidopsis thaliana infected with rice stripe virus (RSV) with RNA-seq based digital gene expression (DGE) analysis. The transcriptomes of RSV-infected samples were compared to those of mock-treated samples at 14 and 21 days post-infection (dpi) during different stages of symptom development. We identified 624 differentially expressed genes (DEGs) in Arabidopsis influenced by RSV at 14 dpi and 21 dpi, among which at 14 dpi, 255 transcripts were induced, and 38 were repressed; at 21 dpi, 146 were induced, and 237 were repressed. Functional annotation indicated that these DEGs were related to multiple biological functions, including defense response, secondary metabolism, protein amino acid phosphorylation and response to abiotic stress. Importantly, the transcription of genes related to host defense systems was activated by RSV infection at an early stage of symptom development (14 dpi), whereas over the infection period (21 dpi), the host defense response systems were suppressed. A total of 52 genes were continuously differentially expressed between the two time points, indicating that the majority of DEGs were transient and unique to a particular time point during symptom development. The DEGs, particularly the defense response genes, identified in this study are candidates suitable for further functional analysis during the RSV-Arabidopsis interaction.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 25%
Researcher 7 18%
Student > Bachelor 5 13%
Student > Master 5 13%
Student > Postgraduate 3 8%
Other 4 10%
Unknown 6 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 45%
Biochemistry, Genetics and Molecular Biology 10 25%
Medicine and Dentistry 1 3%
Engineering 1 3%
Unknown 10 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 December 2016.
All research outputs
#17,828,338
of 22,903,988 outputs
Outputs from Virology Journal
#2,248
of 3,054 outputs
Outputs of similar age
#287,317
of 415,650 outputs
Outputs of similar age from Virology Journal
#24
of 37 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,054 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.7. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,650 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.