↓ Skip to main content

Exercise for haemophilia

Overview of attention for article published in Cochrane database of systematic reviews, December 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
10 tweeters
facebook
1 Facebook page

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
200 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exercise for haemophilia
Published in
Cochrane database of systematic reviews, December 2016
DOI 10.1002/14651858.cd011180.pub2
Pubmed ID
Authors

Karen Strike, Kathy Mulder, Rojer Michael

Abstract

Haemophilia is a bleeding disorder associated with haemorrhaging into joints and muscles. Exercise is often used to aid recovery after bleeds, and to improve joint function in the presence of arthropathy. Our objective was to systematically review the available evidence on the safety and effectiveness of exercise for people with haemophilia. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Coagulopathies Trials Register and electronic databases PubMed, OVID-Embase, and CINAHL. We hand searched abstracts from congresses of the World Federation of Hemophilia and the European Hematology Association, trial registries and the reference lists of relevant articles.Date of the last search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Coagulopathies Trials Register: 14 December 2016. Randomized or quasi-randomized controlled studies comparing any exercise intervention considered relevant in haemophilia management including supervised, unsupervised, aquatic, strengthening, aerobic or cardiovascular, stretching, proprioceptive and balance training exercise programs in males of any age with haemophilia A or B of any severity (those with co-morbidities were not excluded). Two authors reviewed the identified abstracts to determine their eligibility. For studies meeting the inclusion criteria, full articles were obtained. The two authors extracted data and assessed the risk of bias. Any disagreements were resolved by discussion. The authors contacted study investigators to obtain any missing data. Eight studies were included, which represented 233 males with all severities of haemophilia A and B, ranging in age from eight years to 49 years. Study duration ranged from four to 12 weeks. Exercise interventions varied greatly and included resistance exercises, isometric exercises, bicycle ergometry, treadmill walking and hydrotherapy; therefore, comparison between studies was difficult.None of the studies measured or reported adverse effects from the interventions. None of the studies reported outcomes regarding bleed frequency, quality of life or aerobic activity. Overall risk of bias across all studies was assessed as unclear.Very few studies provided sufficient information for comparison. None of the studies reported data that favoured the control group. One study reported that six weeks of resistance training improved joint health status (Colorado score) compared to controls. The addition of pulsed electromagnetic fields also improved ankle scores compared to exercises alone, but this was not seen in the elbows or knees.Two studies reported statistically significant improvements in pain intensity after exercise interventions compared to controls. Hydrotherapy exercises produced significant decreases in pain compared to controls and land-based exercise groups.Two studies found improvement in joint motion in the exercise group compared to controls. One study compared land- and water-based exercises; there was no difference in the range of motion between the two groups; however, the water-based exercise group did show improvement over the control group.One study, comparing joint traction and proprioceptive neuromuscular facilitation for the elbow to a control group, showed no differences in biceps girth or strength after 12 weeks of intervention.Some studies reported comparisons between interventions. In one study, treadmill training significantly improved balance in children compared to bicycle ergometry. Another study added partial weight bearing exercises to quadriceps exercises and showed improved walking tolerance.Four studies evaluated quadriceps or hamstring strength (or both). The addition of bicycle ergometry and exercises with weights was more effective than static exercises and treadmill walking for strengthening knee flexors and extensors. Partial weight-bearing exercises through range were more effective than static and short arc exercises for improving knee extensor strength. The addition of treadmill walking to ultrasound, stretching and strengthening exercises showed increased peak torque of knee flexors and extensors and decrease in knee effusion.The results should be interpreted with caution due to the quality of evidence (GRADE) as outlined in the summary of findings tables, which demonstrates that all but one of the outcomes assessed were rated as low or very low due to the small sample sizes and potential bias. These results must be considered with caution. There is a lack of confidence in the results due to the small number of included studies and the inability to pool the results due to the heterogeneity of outcome measures. Most exercise interventions produced improvement in one or more of the measured outcomes including pain, range of motion, strength and walking tolerance. Hydrotherapy may be more effective than land exercises for pain relief in adults. Functional exercises such as treadmill walking and partial weight bearing exercises seem to be more effective than static or short arc exercises for improving muscle strength. These findings are consistent with the many non-controlled intervention reports in the haemophilia literature. No adverse effects were reported as a result of any of the interventions. However, some groups used prophylactic factor prior to exercise and other groups studied only subjects with moderate haemophilia. Therefore, the safety of these techniques for persons with severe haemophilia remains unclear.

Twitter Demographics

The data shown below were collected from the profiles of 10 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 200 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 <1%
United Kingdom 1 <1%
Canada 1 <1%
Unknown 197 99%

Demographic breakdown

Readers by professional status Count As %
Unspecified 41 21%
Student > Bachelor 29 14%
Student > Master 28 14%
Student > Ph. D. Student 24 12%
Researcher 19 10%
Other 58 29%
Unknown 1 <1%
Readers by discipline Count As %
Medicine and Dentistry 66 33%
Unspecified 56 28%
Nursing and Health Professions 33 17%
Sports and Recreations 11 6%
Psychology 9 5%
Other 24 12%
Unknown 1 <1%

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 July 2019.
All research outputs
#2,388,050
of 13,640,858 outputs
Outputs from Cochrane database of systematic reviews
#5,128
of 10,695 outputs
Outputs of similar age
#84,855
of 372,812 outputs
Outputs of similar age from Cochrane database of systematic reviews
#86
of 155 outputs
Altmetric has tracked 13,640,858 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,695 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.1. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 372,812 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 155 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.