↓ Skip to main content

A new tractable method for generating human alveolar macrophage-like cells in vitro to study lung inflammatory processes and diseases

Overview of attention for article published in mBio, June 2023
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

news
8 news outlets
blogs
1 blog
twitter
17 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A new tractable method for generating human alveolar macrophage-like cells in vitro to study lung inflammatory processes and diseases
Published in
mBio, June 2023
DOI 10.1128/mbio.00834-23
Pubmed ID
Authors

Susanta Pahari, Eusondia Arnett, Jan Simper, Abul Azad, Israel Guerrero-Arguero, Chengjin Ye, Hao Zhang, Hong Cai, Yufeng Wang, Zhao Lai, Natalie Jarvis, Miranda Lumbreras, Diego Jose Maselli, Jay Peters, Jordi B. Torrelles, Luis Martinez-Sobrido, Larry S. Schlesinger

Abstract

Alveolar macrophages (AMs) are unique lung resident cells that contact airborne pathogens and environmental particulates. The contribution of human AMs (HAMs) to pulmonary diseases remains poorly understood due to the difficulty in accessing them from human donors and their rapid phenotypic change during in vitro culture. Thus, there remains an unmet need for cost-effective methods for generating and/or differentiating primary cells into a HAM phenotype, particularly important for translational and clinical studies. We developed cell culture conditions that mimic the lung alveolar environment in humans using lung lipids, that is, Infasurf (calfactant, natural bovine surfactant) and lung-associated cytokines (granulocyte macrophage colony-stimulating factor, transforming growth factor-β, and interleukin 10) that facilitate the conversion of blood-obtained monocytes to an AM-like (AML) phenotype and function in tissue culture. Similar to HAM, AML cells are particularly susceptible to both Mycobacterium tuberculosis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. This study reveals the importance of alveolar space components in the development and maintenance of HAM phenotype and function and provides a readily accessible model to study HAM in infectious and inflammatory disease processes, as well as therapies and vaccines.IMPORTANCEMillions die annually from respiratory disorders. Lower respiratory track gas-exchanging alveoli maintain a precarious balance between fighting invaders and minimizing tissue damage. Key players herein are resident AMs. However, there are no easily accessible in vitro models of HAMs, presenting a huge scientific challenge. Here, we present a novel model for generating AML cells based on differentiating blood monocytes in a defined lung component cocktail. This model is non-invasive, significantly less costly than performing a bronchoalveolar lavage, yields more AML cells than HAMs per donor, and retains their phenotype in culture. We have applied this model to early studies of M. tuberculosis and SARS-CoV-2. This model will significantly advance respiratory biology research.

X Demographics

X Demographics

The data shown below were collected from the profiles of 17 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 21%
Student > Ph. D. Student 6 14%
Student > Bachelor 3 7%
Student > Master 2 5%
Unspecified 1 2%
Other 3 7%
Unknown 18 43%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 17%
Immunology and Microbiology 6 14%
Medicine and Dentistry 3 7%
Agricultural and Biological Sciences 3 7%
Unspecified 1 2%
Other 2 5%
Unknown 20 48%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 59. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 May 2024.
All research outputs
#736,888
of 25,863,888 outputs
Outputs from mBio
#527
of 6,606 outputs
Outputs of similar age
#15,204
of 390,380 outputs
Outputs of similar age from mBio
#7
of 111 outputs
Altmetric has tracked 25,863,888 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,606 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 24.7. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 390,380 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 111 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.