↓ Skip to main content

Interventions for necrotising pancreatitis

Overview of attention for article published in Cochrane database of systematic reviews, April 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

policy
1 policy source
twitter
5 tweeters

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Interventions for necrotising pancreatitis
Published in
Cochrane database of systematic reviews, April 2016
DOI 10.1002/14651858.cd011383.pub2
Pubmed ID
Authors

Kurinchi Selvan Gurusamy, Ajay P Belgaumkar, Adam Haswell, Stephen P Pereira, Brian R Davidson

Abstract

Acute necrotising pancreatitis carries significant mortality, morbidity, and resource use. There is considerable uncertainty as to how people with necrotising pancreatitis should be treated. To assess the benefits and harms of different interventions in people with acute necrotising pancreatitis. We searched the Cochrane Central Register of Controlled Trials (CENTRAL, 2015, Issue 4), MEDLINE, EMBASE, Science Citation Index Expanded, and trials registers to April 2015 to identify randomised controlled trials (RCT). We also searched the references of included trials to identify further trials. We considered only RCTs performed in people with necrotising pancreatitis, irrespective of aetiology, presence of infection, language, blinding, or publication status for inclusion in the review. Two review authors independently identified trials and extracted data. We calculated the odds ratio (OR) and mean difference with 95% confidence intervals (CI) using Review Manager 5 based on an available-case analysis using fixed-effect and random-effects models. We planned a network meta-analysis using Bayesian methods, but due to sparse data and uncertainty about the transitivity assumption, performed only indirect comparisons and used Frequentist methods. We included eight RCTs with 311 participants in this review. After exclusion of five participants, we included 306 participants in one or more outcomes. Five trials (240 participants) investigated the three main treatments: open necrosectomy (121 participants), minimally invasive step-up approach (80 participants), and peritoneal lavage (39 participants) and were included in the network meta-analysis. Three trials (66 participants) investigated the variations in the main treatments: early open necrosectomy (25 participants), delayed open necrosectomy (11 participants), video-assisted minimally invasive step-up approach (12 participants), endoscopic minimally invasive step-up approach (10 participants), minimally invasive step-up approach (planned surgery) (four participants), and minimally invasive step-up approach (continued percutaneous drainage) (four participants). The trials included infected or sterile necrotising pancreatitis of varied aetiology.All the trials were at unclear or high risk of bias and the overall quality of evidence was low or very low for all the outcomes. Overall, short-term mortality was 30% and serious adverse events rate was 139 serious adverse events per 100 participants. The differences in short-term mortality and proportion of people with serious adverse events were imprecise in all the comparisons. The number of serious adverse events and adverse events were fewer in the minimally invasive step-up approach compared to open necrosectomy (serious adverse events: rate ratio 0.41, 95% CI 0.25 to 0.68; 88 participants; 1 study; adverse events: rate ratio 0.41, 95% CI 0.25 to 0.68; 88 participants; 1 study). The proportion of people with organ failure and the mean costs were lower in the minimally invasive step-up approach compared to open necrosectomy (organ failure: OR 0.20, 95% CI 0.07 to 0.60; 88 participants; 1 study; mean difference in costs: USD -11,922; P value < 0.05; 88 participants; 1 studies). There were more adverse events with video-assisted minimally invasive step-up approach group compared to endoscopic-assisted minimally invasive step-up approach group (rate ratio 11.70, 95% CI 1.52 to 89.87; 22 participants; 1 study), but the number of interventions per participant was less with video-assisted minimally invasive step-up approach group compared to endoscopic minimally invasive step-up approach group (difference in medians: 2 procedures; P value < 0.05; 20 participants; 1 study). The differences in any of the other comparisons for number of serious adverse events, proportion of people with organ failure, number of adverse events, length of hospital stay, and intensive therapy unit stay were either imprecise or were not consistent. None of the trials reported long-term mortality, infected pancreatic necrosis (trials that included participants with sterile necrosis), health-related quality of life at any time frame, proportion of people with adverse events, requirement for additional invasive intervention, time to return to normal activity, and time to return to work. Low to very low quality evidence suggested that the minimally invasive step-up approach resulted in fewer adverse events, serious adverse events, less organ failure, and lower costs compared to open necrosectomy. Very low quality evidence suggested that the endoscopic minimally invasive step-up approach resulted in fewer adverse events than the video-assisted minimally invasive step-up approach but increased the number of procedures required for treatment. There is currently no evidence to suggest that early open necrosectomy is superior or inferior to peritoneal lavage or delayed open necrosectomy. However, the CIs were wide and significant benefits or harms of different treatments cannot be ruled out. The TENSION trial currently underway in Netherlands is assessing the optimal way to perform the minimally invasive step-up approach (endoscopic drainage followed by endoscopic necrosectomy if necessary versus percutaneous drainage followed by video-assisted necrosectomy if necessary) and is assessing important clinical outcomes of interest for this review. Implications for further research on this topic will be determined after the results of this RCT are available.

Twitter Demographics

The data shown below were collected from the profiles of 5 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 3 30%
Student > Master 1 10%
Student > Bachelor 1 10%
Other 1 10%
Student > Ph. D. Student 1 10%
Other 3 30%
Readers by discipline Count As %
Medicine and Dentistry 6 60%
Unspecified 3 30%
Social Sciences 1 10%

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 September 2018.
All research outputs
#2,463,686
of 13,465,538 outputs
Outputs from Cochrane database of systematic reviews
#5,339
of 10,607 outputs
Outputs of similar age
#88,975
of 372,089 outputs
Outputs of similar age from Cochrane database of systematic reviews
#106
of 173 outputs
Altmetric has tracked 13,465,538 research outputs across all sources so far. Compared to these this one has done well and is in the 78th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,607 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.0. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 372,089 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 173 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.