↓ Skip to main content

An Eye to a Kill: Using Predatory Bacteria to Control Gram-Negative Pathogens Associated with Ocular Infections

Overview of attention for article published in PLOS ONE, June 2013
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (97th percentile)

Mentioned by

news
13 news outlets
blogs
2 blogs
twitter
6 X users
patent
1 patent
googleplus
2 Google+ users

Citations

dimensions_citation
72 Dimensions

Readers on

mendeley
92 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An Eye to a Kill: Using Predatory Bacteria to Control Gram-Negative Pathogens Associated with Ocular Infections
Published in
PLOS ONE, June 2013
DOI 10.1371/journal.pone.0066723
Pubmed ID
Authors

Robert M. Q. Shanks, Viral R. Davra, Eric G. Romanowski, Kimberly M. Brothers, Nicholas A. Stella, Dipti Godboley, Daniel E. Kadouri

Abstract

Ocular infections are a leading cause of vision loss. It has been previously suggested that predatory prokaryotes might be used as live antibiotics to control infections. In this study, Pseudomonas aeruginosa and Serratia marcescens ocular isolates were exposed to the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. All tested S. marcescens isolates were susceptible to predation by B. bacteriovorus strains 109J and HD100. Seven of the 10 P. aeruginosa isolates were susceptible to predation by B. bacteriovorus 109J with 80% being attacked by M. aeruginosavorus. All of the 19 tested isolates were found to be sensitive to at least one predator. To further investigate the effect of the predators on eukaryotic cells, human corneal-limbal epithelial (HCLE) cells were exposed to high concentrations of the predators. Cytotoxicity assays demonstrated that predatory bacteria do not damage ocular surface cells in vitro whereas the P. aeruginosa used as a positive control was highly toxic. Furthermore, no increase in the production of the proinflammatory cytokines IL-8 and TNF-alpha was measured in HCLE cells after exposure to the predators. Finally, injection of high concentration of predatory bacteria into the hemocoel of Galleria mellonella, an established model system used to study microbial pathogenesis, did not result in any measurable negative effect to the host. Our results suggest that predatory bacteria could be considered in the near future as a safe topical bio-control agent to treat ocular infections.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 92 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 91 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 23%
Student > Bachelor 14 15%
Researcher 11 12%
Student > Master 11 12%
Student > Doctoral Student 5 5%
Other 16 17%
Unknown 14 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 28%
Immunology and Microbiology 14 15%
Medicine and Dentistry 10 11%
Biochemistry, Genetics and Molecular Biology 9 10%
Veterinary Science and Veterinary Medicine 2 2%
Other 14 15%
Unknown 17 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 122. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 June 2021.
All research outputs
#330,475
of 24,885,505 outputs
Outputs from PLOS ONE
#4,739
of 215,531 outputs
Outputs of similar age
#2,185
of 202,007 outputs
Outputs of similar age from PLOS ONE
#123
of 4,619 outputs
Altmetric has tracked 24,885,505 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 215,531 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.7. This one has done particularly well, scoring higher than 97% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 202,007 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 4,619 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 97% of its contemporaries.