↓ Skip to main content

APOE Genotype Differentially Modulates Effects of Anti-Aβ, Passive Immunization in APP Transgenic Mice

Overview of attention for article published in Molecular Neurodegeneration, January 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

news
1 news outlet
twitter
2 X users
video
1 YouTube creator

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
APOE Genotype Differentially Modulates Effects of Anti-Aβ, Passive Immunization in APP Transgenic Mice
Published in
Molecular Neurodegeneration, January 2017
DOI 10.1186/s13024-017-0156-1
Pubmed ID
Authors

Joanna E Pankiewicz, Jairo Baquero-Buitrago, Sandrine Sanchez, Jennifer Lopez-Contreras, Jungsu Kim, Patrick M. Sullivan, David M. Holtzman, Martin J. Sadowski

Abstract

APOE genotype is the foremost genetic factor modulating β-amyloid (Aβ) deposition and risk of sporadic Alzheimer's disease (AD). Here we investigated how APOE genotype influences response to anti-Aβ immunotherapy. APPSW/PS1dE9 (APP) transgenic mice with targeted replacement of the murine Apoe gene for human APOE alleles received 10D5 anti-Aβ or TY11-15 isotype control antibodies between the ages of 12 and 15 months. Anti-Aβ immunization decreased both the load of fibrillar plaques and the load of Aβ immunopositive plaques in mice of all APOE backgrounds. Although the relative reduction in parenchymal Aβ plaque load was comparable across all APOE genotypes, APP/ε4 mice showed the greatest reduction in the absolute Aβ plaque load values, given their highest baseline. The immunization stimulated phagocytic activation of microglia, which magnitude adjusted for the post-treatment plaque load was the greatest in APP/ε4 mice implying association between the ε4 allele and impaired Aβ phagocytosis. Perivascular hemosiderin deposits reflecting ensued microhemorrhages were associated with vascular Aβ (VAβ) and ubiquitously present in control mice of all APOE genotypes, although in APP/ε3 mice their incidence was the lowest. Anti-Aβ immunization significantly reduced VAβ burden but increased the number of hemosiderin deposits across all APOE genotypes with the strongest and the weakest effect in APP/ε2 and APP/ε3 mice, respectively. Our studies indicate that APOE genotype differentially modulates microglia activation and Aβ plaque load reduction during anti-Aβ immunotherapy. The APOE ε3 allele shows strong protective effect against immunotherapy associated microhemorrhages; while, conversely, the APOE ε2 allele increases risk thereof.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 19%
Student > Bachelor 11 18%
Student > Master 10 16%
Other 6 10%
Researcher 6 10%
Other 6 10%
Unknown 11 18%
Readers by discipline Count As %
Neuroscience 12 19%
Agricultural and Biological Sciences 9 15%
Medicine and Dentistry 7 11%
Biochemistry, Genetics and Molecular Biology 6 10%
Nursing and Health Professions 3 5%
Other 11 18%
Unknown 14 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 July 2017.
All research outputs
#2,793,372
of 22,950,943 outputs
Outputs from Molecular Neurodegeneration
#373
of 852 outputs
Outputs of similar age
#60,214
of 420,210 outputs
Outputs of similar age from Molecular Neurodegeneration
#6
of 25 outputs
Altmetric has tracked 22,950,943 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 852 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.3. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,210 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.