↓ Skip to main content

Cyanobacterial Contribution to Travertine Deposition in the Hoyoux River System, Belgium

Overview of attention for article published in Microbial Ecology, January 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cyanobacterial Contribution to Travertine Deposition in the Hoyoux River System, Belgium
Published in
Microbial Ecology, January 2017
DOI 10.1007/s00248-017-0937-7
Pubmed ID
Authors

Julia Kleinteich, Stjepko Golubic, Igor S. Pessi, David Velázquez, Jean-Yves Storme, François Darchambeau, Alberto V. Borges, Philippe Compère, Gudrun Radtke, Seong-Joo Lee, Emmanuelle J. Javaux, Annick Wilmotte

Abstract

Travertine deposition is a landscape-forming process, usually building a series of calcareous barriers differentiating the river flow into a series of cascades and ponds. The process of carbonate precipitation is a complex relationship between biogenic and abiotic causative agents, involving adapted microbial assemblages but also requiring high levels of carbonate saturation, spontaneous degassing of carbon dioxide and slightly alkaline pH. We have analysed calcareous crusts and water chemistry from four sampling sites along the Hoyoux River and its Triffoy tributary (Belgium) in winter, spring, summer and autumn 2014. Different surface textures of travertine deposits correlated with particular microenvironments and were influenced by the local water flow. In all microenvironments, we have identified the cyanobacterium Phormidium incrustatum (Nägeli) Gomont as the organism primarily responsible for carbonate precipitation and travertine fabric by combining morphological analysis with molecular sequencing (16S rRNA gene and ITS, the Internal Transcribed Spacer fragments), targeting both field populations and cultures to exclude opportunistic microorganisms responding favourably to culture conditions. Several closely related cyanobacterial strains were cultured; however, only one proved identical with the sequences obtained from the field population by direct PCR. This strain was the dominant primary producer in the calcareous deposits under study and in similar streams in Europe. The dominance of one organism that had a demonstrated association with carbonate precipitation presented a valuable opportunity to study its function in construction, preservation and fossilisation potential of ambient temperature travertine deposits. These relationships were examined using scanning electron microscopy and Raman microspectroscopy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 26%
Researcher 7 21%
Student > Master 4 12%
Student > Doctoral Student 3 9%
Professor 2 6%
Other 4 12%
Unknown 5 15%
Readers by discipline Count As %
Environmental Science 9 26%
Agricultural and Biological Sciences 9 26%
Earth and Planetary Sciences 4 12%
Medicine and Dentistry 3 9%
Immunology and Microbiology 2 6%
Other 0 0%
Unknown 7 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 February 2017.
All research outputs
#17,873,766
of 22,950,943 outputs
Outputs from Microbial Ecology
#1,605
of 2,063 outputs
Outputs of similar age
#293,412
of 420,054 outputs
Outputs of similar age from Microbial Ecology
#37
of 42 outputs
Altmetric has tracked 22,950,943 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,063 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,054 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.