↓ Skip to main content

Exercise-based cardiac rehabilitation for adults with atrial fibrillation

Overview of attention for article published in Cochrane database of systematic reviews, February 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
20 tweeters
facebook
3 Facebook pages
wikipedia
1 Wikipedia page

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
149 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exercise-based cardiac rehabilitation for adults with atrial fibrillation
Published in
Cochrane database of systematic reviews, February 2017
DOI 10.1002/14651858.cd011197.pub2
Pubmed ID
Authors

Signe S Risom, Ann-Dorthe Zwisler, Pernille P Johansen, Kirstine L Sibilitz, Jane Lindschou, Christian Gluud, Rod S Taylor, Jesper H Svendsen, Selina K Berg

Abstract

Exercise-based cardiac rehabilitation may benefit adults with atrial fibrillation or those who had been treated for atrial fibrillation. Atrial fibrillation is caused by multiple micro re-entry circuits within the atrial tissue, which result in chaotic rapid activity in the atria. To assess the benefits and harms of exercise-based rehabilitation programmes, alone or with another intervention, compared with no-exercise training controls in adults who currently have AF, or have been treated for AF. We searched the following electronic databases; CENTRAL and the Database of Abstracts of Reviews of Effectiveness (DARE) in the Cochrane Library, MEDLINE Ovid, Embase Ovid, PsycINFO Ovid, Web of Science Core Collection Thomson Reuters, CINAHL EBSCO, LILACS Bireme, and three clinical trial registers on 14 July 2016. We also checked the bibliographies of relevant systematic reviews identified by the searches. We imposed no language restrictions. We included randomised controlled trials (RCT) that investigated exercise-based interventions compared with any type of no-exercise control. We included trials that included adults aged 18 years or older with atrial fibrillation, or post-treatment for atrial fibrillation. Two authors independently extracted data. We assessed the risk of bias using the domains outlined in the Cochrane Handbook for Systematic Reviews of Interventions. We assessed clinical and statistical heterogeneity by visual inspection of the forest plots, and by using standard Chi² and I² statistics. We performed meta-analyses using fixed-effect and random-effects models; we used standardised mean differences where different scales were used for the same outcome. We assessed the risk of random errors with trial sequential analysis (TSA) and used the GRADE methodology to rate the quality of evidence, reporting it in the 'Summary of findings' table. We included six RCTs with a total of 421 patients with various types of atrial fibrillation. All trials were conducted between 2006 and 2016, and had short follow-up (eight weeks to six months). Risks of bias ranged from high risk to low risk.The exercise-based programmes in four trials consisted of both aerobic exercise and resistance training, in one trial consisted of Qi-gong (slow and graceful movements), and in another trial, consisted of inspiratory muscle training.For mortality, very low-quality evidence from six trials suggested no clear difference in deaths between the exercise and no-exercise groups (relative risk (RR) 1.00, 95% confidence interval (CI) 0.06 to 15.78; participants = 421; I² = 0%; deaths = 2). Very low-quality evidence from five trials suggested no clear difference between groups for serious adverse events (RR 1.01, 95% CI 0.98 to 1.05; participants = 381; I² = 0%; events = 8). Low-quality evidence from two trials suggested no clear difference in health-related quality of life for the Short Form-36 (SF-36) physical component summary measure (mean difference (MD) 1.96, 95% CI -2.50 to 6.42; participants = 224; I² = 69%), or the SF-36 mental component summary measure (MD 1.99, 95% CI -0.48 to 4.46; participants = 224; I² = 0%). Exercise capacity was assessed by cumulated work, or maximal power (Watt), obtained by cycle ergometer, or by six minute walking test, or ergospirometry testing measuring VO2 peak. We found moderate-quality evidence from two studies that exercise-based rehabilitation increased exercise capacity, measured by VO2 peak, more than no exercise (MD 3.76, 95% CI 1.37 to 6.15; participants = 208; I² = 0%); and very low-quality evidence from four studies that exercise-based rehabilitation increased exercise capacity more than no exercise, measured by the six-minute walking test (MD 75.76, 95% CI 14.00 to 137.53; participants = 272; I² = 85%). When we combined the different assessment tools for exercise capacity, we found very low-quality evidence from six trials that exercise-based rehabilitation increased exercise capacity more than no exercise (standardised mean difference (SMD) 0.86, 95% CI 0.46 to 1.26; participants = 359; I² = 65%). Overall, the quality of the evidence for the outcomes ranged from moderate to very-low. Due to few randomised patients and outcomes, we could not evaluate the real impact of exercise-based cardiac rehabilitation on mortality or serious adverse events. The evidence showed no clinically relevant effect on health-related quality of life. Pooled data showed a positive effect on the surrogate outcome of physical exercise capacity, but due to the low number of patients and the moderate to very low-quality of the underpinning evidence, we could not be certain of the magnitude of the effect. Future high-quality randomised trials are needed to assess the benefits and harms of exercise-based cardiac rehabilitation for adults with atrial fibrillation on patient-relevant outcomes.

Twitter Demographics

The data shown below were collected from the profiles of 20 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 149 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Hungary 1 <1%
Colombia 1 <1%
Unknown 146 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 38 26%
Unspecified 22 15%
Student > Bachelor 19 13%
Student > Ph. D. Student 19 13%
Researcher 15 10%
Other 36 24%
Readers by discipline Count As %
Medicine and Dentistry 49 33%
Unspecified 35 23%
Nursing and Health Professions 28 19%
Psychology 10 7%
Sports and Recreations 7 5%
Other 20 13%

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 April 2019.
All research outputs
#919,694
of 12,959,872 outputs
Outputs from Cochrane database of systematic reviews
#2,923
of 10,419 outputs
Outputs of similar age
#36,654
of 343,333 outputs
Outputs of similar age from Cochrane database of systematic reviews
#74
of 217 outputs
Altmetric has tracked 12,959,872 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,419 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.5. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,333 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 217 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.