↓ Skip to main content

Slow lung clearance and limited translocation of four sizes of inhaled iridium nanoparticles

Overview of attention for article published in Particle and Fibre Toxicology, February 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)

Mentioned by

policy
1 policy source
twitter
13 tweeters
video
1 video uploader

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Slow lung clearance and limited translocation of four sizes of inhaled iridium nanoparticles
Published in
Particle and Fibre Toxicology, February 2017
DOI 10.1186/s12989-017-0185-5
Pubmed ID
Authors

Alison Buckley, James Warren, Alan Hodgson, Tim Marczylo, Konstantin Ignatyev, Chang Guo, Rachel Smith

Abstract

Concerns have been expressed that inhaled nanoparticles may behave differently to larger particles in terms of lung clearance and translocation, with potential implications for their toxicity. Studies undertaken to investigate this have typically involved limited post-exposure periods. There is a shortage of information on longer-term clearance and translocation patterns and their dependence on particle size, which this study aimed to address. Rats were exposed (<3 h) nose-only to aerosols of spark-generated radioactive iridium-192 nanoparticles of four sizes: 10 nm, 15 nm, 35 nm and 75 nm (count median diameter) (aerosol mass concentrations 17, 140, 430, and 690 μg/m(3), respectively). The content of iridium-192 in the whole animal, organs, tissues, and excreta was measured at various times post-exposure to ≥ 1 month. Limited toxicological investigations were undertaken for the 10 nm aerosol using bronchoalveolar lavage fluid. Elemental maps of tissue samples were produced using laser ablation inductively coupled plasma mass spectrometry and synchrotron micro-focus x-ray fluorescence. The chemical speciation of the iridium was explored using synchrotron micro focus x-ray near-edge absorption spectroscopy. Long-term lung retention half-times of several hundred days were found, which were not dependent on particle size. There was significant variation between individual animals. Analysis of bronchoalveolar lavage fluid for the 10 nm aerosol indicated a limited inflammatory response resolving within the first 7 days. Low levels of, particle size dependent, translocation to the kidney and liver were found (maximum 0.4% of the lung content). Any translocation to the brain was below the limits of detection (i.e. < 0.01% of the lung content). The kidney content increased to approximately 30 days and then remained broadly constant or decreased, whereas the content in the liver increased throughout the study. Laser ablation inductively coupled plasma mass spectrometry analysis indicated homogeneous iridium distribution in the liver and within the cortex in the kidney. Slow lung clearance and a pattern of temporally increasing concentrations in key secondary target organs has been demonstrated for inhaled iridium aerosol particles < 100 nm, which may have implications for long-term toxicity, especially in the context of chronic exposures.

Twitter Demographics

The data shown below were collected from the profiles of 13 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 29%
Student > Ph. D. Student 3 18%
Professor 2 12%
Student > Master 2 12%
Other 1 6%
Other 2 12%
Unknown 2 12%
Readers by discipline Count As %
Medicine and Dentistry 4 24%
Environmental Science 3 18%
Physics and Astronomy 1 6%
Immunology and Microbiology 1 6%
Linguistics 1 6%
Other 4 24%
Unknown 3 18%

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 March 2018.
All research outputs
#1,627,084
of 14,570,705 outputs
Outputs from Particle and Fibre Toxicology
#56
of 431 outputs
Outputs of similar age
#52,879
of 352,562 outputs
Outputs of similar age from Particle and Fibre Toxicology
#1
of 2 outputs
Altmetric has tracked 14,570,705 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 431 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,562 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 2 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them