↓ Skip to main content

Gas confinement in compartmentalized coordination polymers for highly selective sorption

Overview of attention for article published in Chemical Science, January 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 tweeters

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Gas confinement in compartmentalized coordination polymers for highly selective sorption
Published in
Chemical Science, January 2017
DOI 10.1039/c6sc05122g
Pubmed ID
Authors

Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas

Abstract

Discrimination between different gases is an essential aspect for industrial and environmental applications involving sensing and separation. Several classes of porous materials have been used in this context, including zeolites and more recently MOFs. However, to reach high selectivities for the separation of gas mixtures is a challenging task that often requires the understanding of the specific interactions established between the porous framework and the gases. Here we propose an approach to obtain an enhanced selectivity based on the use of compartmentalized coordination polymers, named CCP-1 and CCP-2, which are crystalline materials comprising isolated discrete cavities. These compartmentalized materials are excellent candidates for the selective separation of CO2 from methane and nitrogen. A complete understanding of the sorption process is accomplished with the use of complementary experimental techniques including X-ray diffraction, adsorption studies, inelastic- and quasi-elastic neutron scattering, magnetic measurements and molecular dynamics calculations.

Twitter Demographics

The data shown below were collected from the profiles of 4 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 34%
Student > Ph. D. Student 5 17%
Professor 3 10%
Student > Bachelor 2 7%
Student > Doctoral Student 2 7%
Other 4 14%
Unknown 3 10%
Readers by discipline Count As %
Chemistry 15 52%
Chemical Engineering 3 10%
Materials Science 3 10%
Physics and Astronomy 1 3%
Earth and Planetary Sciences 1 3%
Other 0 0%
Unknown 6 21%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 October 2020.
All research outputs
#10,010,141
of 17,389,828 outputs
Outputs from Chemical Science
#3,739
of 5,700 outputs
Outputs of similar age
#172,154
of 369,187 outputs
Outputs of similar age from Chemical Science
#71
of 120 outputs
Altmetric has tracked 17,389,828 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,700 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 369,187 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 120 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.