↓ Skip to main content

How flies are flirting on the fly

Overview of attention for article published in BMC Biology, February 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#41 of 1,434)
  • High Attention Score compared to outputs of the same age (98th percentile)

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
How flies are flirting on the fly
Published in
BMC Biology, February 2017
DOI 10.1186/s12915-016-0342-6
Pubmed ID
Authors

Courtney Eichorn, Michael Hrabar, Emma C. Van Ryn, Bekka S. Brodie, Adam J. Blake, Gerhard Gries

Abstract

Flies have some of the most elaborate visual systems in the Insecta, often featuring large, sexually dimorphic eyes with specialized "bright zones" that may have a functional role during mate-seeking behavior. The fast visual system of flies is considered to be an adaptation in support of their advanced flight abilities. Here, we show that the immense processing speed of the flies' photoreceptors plays a crucial role in mate recognition. Video-recording wing movements of abdomen-mounted common green bottle flies, Lucilia sericata, under direct light at 15,000 frames per second revealed that wing movements produce a single, reflected light flash per wing beat. Such light flashes were not evident when we video-recorded wing movements under diffuse light. Males of L. sericata are strongly attracted to wing flash frequencies of 178 Hz, which are characteristic of free-flying young females (prospective mates), significantly more than to 212, 235, or 266 Hz, characteristic of young males, old females, and old males, respectively. In the absence of phenotypic traits of female flies, and when given a choice between light emitting diodes that emitted either constant light or light pulsed at a frequency of 110, 178, 250, or 290 Hz, males show a strong preference for the 178-Hz pulsed light, which most closely approximates the wing beat frequency of prospective mates. We describe a previously unrecognized visual mate recognition system in L. sericata. The system depends upon the sex- and age-specific frequencies of light flashes reflecting off moving wings, and the ability of male flies to distinguish between the frequency of light flashes produced by rival males and prospective mates. Our findings imply that insect photoreceptors with fast processing speed may not only support agile flight with advanced maneuverability but may also play a supreme role in mate recognition. The low mating propensity of L. sericata males on cloudy days, when light flashes from the wings of flying females are absent, seems to indicate that these flies synchronize sexual communication with environmental conditions that optimize the conspicuousness of their communication signals, as predicted by sensory drive theory.

Twitter Demographics

The data shown below were collected from the profiles of 50 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 2%
Unknown 43 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 25%
Student > Bachelor 10 23%
Student > Ph. D. Student 8 18%
Researcher 6 14%
Professor 3 7%
Other 4 9%
Unknown 2 5%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 68%
Neuroscience 3 7%
Mathematics 2 5%
Nursing and Health Professions 1 2%
Biochemistry, Genetics and Molecular Biology 1 2%
Other 5 11%
Unknown 2 5%

Attention Score in Context

This research output has an Altmetric Attention Score of 113. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 February 2020.
All research outputs
#199,158
of 16,581,438 outputs
Outputs from BMC Biology
#41
of 1,434 outputs
Outputs of similar age
#6,984
of 366,580 outputs
Outputs of similar age from BMC Biology
#1
of 1 outputs
Altmetric has tracked 16,581,438 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,434 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 19.6. This one has done particularly well, scoring higher than 97% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 366,580 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them