↓ Skip to main content

Laser-assisted subepithelial keratectomy (LASEK) versus laser-assisted in-situ keratomileusis (LASIK) for correcting myopia

Overview of attention for article published in Cochrane database of systematic reviews, February 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
14 tweeters
wikipedia
4 Wikipedia pages

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
108 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Laser-assisted subepithelial keratectomy (LASEK) versus laser-assisted in-situ keratomileusis (LASIK) for correcting myopia
Published in
Cochrane database of systematic reviews, February 2017
DOI 10.1002/14651858.cd011080.pub2
Pubmed ID
Authors

Jocelyn Kuryan, Anjum Cheema, Roy S Chuck

Abstract

Near-sightedness, or myopia, is a condition in which light rays entering the eye along the visual axis focus in front of the retina, resulting in blurred vision. Myopia can be treated with spectacles, contact lenses, or refractive surgery. Options for refractive surgery include laser-assisted subepithelial keratectomy (LASEK) and laser-assisted in-situ keratomileusis (LASIK). Both procedures utilize a laser to shape the corneal tissue (front of the eye) to correct refractive error, and both create flaps before laser treatment of corneal stromal tissue. Whereas the flap in LASEK is more superficial and epithelial, in LASIK it is thicker and also includes some anterior stromal tissue. LASEK is considered a surface ablation procedure, much like its predecessor, photorefractive keratectomy (PRK). LASEK was developed as an alternative to PRK to address the issue of pain associated with epithelial debridement used for PRK. Assessing the relative benefits and risks/side effects of LASEK and LASIK warrants a systematic review. To assess the effects of LASEK versus LASIK for correcting myopia. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), which contains the Cochrane Eyes and Vision Trials Register (2016, Issue 10); MEDLINE Ovid (1946 to 24 October 2016); Embase.com (1947 to 24 October 2016); PubMed (1948 to 24 October 2016); LILACS (Latin American and Caribbean Health Sciences Literature Database; 1982 to 24 October 2016); the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), last searched 20 June 2014; ClinicalTrials.gov (www.clinicaltrials.gov); searched 24 October 2016; and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en); searched 24 October 2016. We did not use any date or language restrictions in the electronic searches for trials. We considered only randomized controlled trials (RCTs) for the purposes of this review. Eligible RCTs were those in which myopic participants were assigned randomly to receive either LASEK or LASIK in one or both eyes. We also included paired-eye studies in which investigators randomly selected which of the participant's eyes would receive LASEK or LASIK and assigned the other eye to the other procedure. Participants were men or women between the ages of 18 and 60 years with myopia up to 12 diopters (D) and/or myopic astigmatism of severity up to 3 D, who did not have a history of prior refractive surgery. Two review authors independently screened all reports and assessed the risk of bias in trials included in this review. We extracted data and summarized findings using risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes. In the absence of clinical and methodological heterogeneity across trials, we used a random-effects model to calculate summary effect estimates. We used a fixed-effect model when including fewer than three trials in a meta-analysis. When clinical, methodological, or statistical heterogeneity was observed across trials, we reported our findings in a narrative synthesis. We identified four eligible trials with 538 eyes of 392 participants for the review, but only three trials (154 participants) provided outcome data for analysis. We found no ongoing trials. Two of four trials were from China, one trial was from Turkey, and the location of one trial was not reported. The risk of bias for most domains was unclear due to poor reporting of trial methods; no trial had a protocol or trial registry record. Three trials enrolled participants with mild to moderate myopia (less than -6.50 D); one trial included only participants with severe myopia (more than -6.00 D).The evidence showed uncertainty in whether there is a difference between LASEK and LASIK in uncorrected visual acuity (UCVA) at 12 months, the primary outcome in our review. The RR and 95% confidence interval (CI) at 12 months after surgery was 0.96 (95% CI 0.82 to 1.13) for UCVA of 20/20 or better and 0.90 (95% CI 0.67 to 1.21) for UCVA of 20/40 or better based on data from one trial with 57 eyes (very low-certainty evidence). People receiving LASEK were less likely to achieve a refractive error within 0.5 diopters of the target at 12 months follow-up (RR 0.69, 95% CI 0.48 to 0.99; 57 eyes; very low-certainty evidence). One trial reported mild corneal haze at six months in one eye in the LASEK group and none in the LASIK group (RR 2.11, 95% CI 0.57 to 7.82; 76 eyes; very low-certainty evidence). None of the included trials reported postoperative pain score or loss of visual acuity, spherical equivalent of the refractive error, or quality of life at 12 months.Refractive regression, an adverse event, was reported only in the LASEK group (8 of 37 eyes) compared with none of 39 eyes in the LASIK group in one trial (low-certainty evidence). Other adverse events, such as corneal flap striae and refractive over-correction, were reported only in the LASIK group (5 of 39 eyes) compared with none of 37 eyes in the LASEK group in one trial (low-certainty evidence). Overall, from the available RCTs, there is uncertainty in how LASEK compares with LASIK in achieving better refractive and visual results in mildly to moderately myopic participants. Large, well-designed RCTs would be required to estimate the magnitude of any difference in efficacy or adverse effects between LASEK and LASIK for treating myopia or myopic astigmatism.

Twitter Demographics

The data shown below were collected from the profiles of 14 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 108 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 108 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 18 17%
Student > Ph. D. Student 15 14%
Researcher 12 11%
Student > Bachelor 11 10%
Other 9 8%
Other 19 18%
Unknown 24 22%
Readers by discipline Count As %
Medicine and Dentistry 37 34%
Nursing and Health Professions 16 15%
Psychology 5 5%
Social Sciences 4 4%
Pharmacology, Toxicology and Pharmaceutical Science 4 4%
Other 15 14%
Unknown 27 25%

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 November 2017.
All research outputs
#1,851,064
of 16,479,040 outputs
Outputs from Cochrane database of systematic reviews
#4,506
of 11,507 outputs
Outputs of similar age
#61,449
of 412,166 outputs
Outputs of similar age from Cochrane database of systematic reviews
#116
of 235 outputs
Altmetric has tracked 16,479,040 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,507 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 24.3. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 412,166 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 235 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.