↓ Skip to main content

Comparative speed of kill of sarolaner (Simparica®) and afoxolaner (NexGard®) against induced infestations of Ixodes holocyclus on dogs

Overview of attention for article published in Parasites & Vectors, February 2017
Altmetric Badge

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative speed of kill of sarolaner (Simparica®) and afoxolaner (NexGard®) against induced infestations of Ixodes holocyclus on dogs
Published in
Parasites & Vectors, February 2017
DOI 10.1186/s13071-017-2024-9
Pubmed ID
Authors

Raj Packianathan, Andrew Hodge, Natalie Bruellke, Kylie Davis, Steven Maeder

Abstract

The Australian paralysis tick, Ixodes holocyclus, causes paralysis predominantly in dogs and cats in the Eastern coastal regions of Australia. Rapid onset of effect of a parasiticide is critical to minimize the deleterious effects of these tick infestations, especially tick paralysis caused by the salivary neurotoxin. The speed of kill of a novel orally administered isoxazoline parasiticide, sarolaner chewable tablets (Simparica(®)), against I. holocyclus on dogs was evaluated and compared with afoxolaner (NexGard(®)) for 5 weeks after a single oral dose. Twenty-four (24) dogs were randomly allocated to treatment with either placebo, sarolaner (label dose of 2 to 4 mg/kg as per dosing table), or afoxolaner (label dose of 2.7 to 6.9 mg/kg) based on pre-treatment body weights. Following artificial infestation on Day -1, dogs were examined and live ticks counted at 8, 12, 24 and 48 h after treatment on Day 0, and at 12, 24 and 48 h after subsequent re-infestations on Days 7, 14, 21, 28 and 35. Efficacy was determined at each time point relative to counts for placebo dogs based on geometric means. At 8 and 12 h time points on Day 0, sarolaner-treated dogs had significantly lower geometric mean tick counts compared to the dogs treated with afoxolaner (P ≤ 0.0303). Efficacy of sarolaner against an existing infestation was 86.2 and 96.9% compared with that of afoxolaner which had efficacy of 21.3 and 85.0% at 8 and 12 h time points, respectively. Against subsequent weekly re-infestations at 12 h time points, treatment with sarolaner resulted in significantly lower geometric mean tick counts than afoxolaner-treated dogs on all days (P ≤ 0.0077) with the efficacy ranging from 60.2 to 92.2%, compared to 5.8 to 61.0% in the afoxolaner-treated dogs. Against subsequent weekly re-infestations at the 24 h time points on Days 22 and 36, efficacy of sarolaner was significantly higher at 99.2 and 97.9%, respectively, compared with afoxolaner which had efficacy of 92.4 and 91.9% (P ≤ 0.0356). At the 48 h time points following each of the five weekly re-infestations, the mean efficacy results of sarolaner and afoxolaner treated dogs were similar on most occasions. There were no adverse reactions to treatments. In this controlled laboratory evaluation, a single dose of sarolaner had a significantly faster speed of kill against an existing infestation of I. holocyclus, than afoxolaner at 8 and 12 h post-treatment. The rapid and consistent kill of ticks provided by sarolaner within 24 h after a single oral dose and following weekly re-infestations over 35 days suggests this treatment will provide highly effective, rapid and reliable control of ticks over the entire treatment interval, thereby minimizing the risk of tick paralysis in dogs.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 25%
Student > Master 4 17%
Researcher 3 13%
Other 3 13%
Professor 2 8%
Other 3 13%
Unknown 3 13%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 7 29%
Agricultural and Biological Sciences 5 21%
Medicine and Dentistry 4 17%
Philosophy 1 4%
Immunology and Microbiology 1 4%
Other 1 4%
Unknown 5 21%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 January 2018.
All research outputs
#9,491,067
of 12,347,188 outputs
Outputs from Parasites & Vectors
#2,069
of 3,166 outputs
Outputs of similar age
#174,552
of 257,874 outputs
Outputs of similar age from Parasites & Vectors
#91
of 151 outputs
Altmetric has tracked 12,347,188 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,166 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 257,874 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 151 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.